
Cite as:
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Abstract

Open-source scientific research has become indispensable, because it fosters a global collaborative environ-

ment in which knowledge is freely shared, accelerating the pace of discovery. Emphasizing transparency and

reproducibility ensures the credibility of scientific findings, while democratizing access to research gives a

wider community the opportunity to contribute to progress. Avoiding duplication of effort leads to faster

progress and greater societal benefit. The Python programming language provides readable code and is

highly collaborative, leading to a large user community. Libraries such as NumPy (i.e. numerical Python)

and SciPy (i.e. scientific computing) have been developed for scientific research. The latter was crucial, for
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example, in the discovery of gravitational waves and the first imaging of a black hole.

This review focuses on selected open-source Python libraries that support scientific development in the field

of signal processing and mechanical systems. In particular, the article focuses on packages related to signal

processing, experimental and operational modal analysis, vibration fatigue, image-based identification of

structural dynamics, vibration control, substructuring, rotor dynamics, vibrations in pipeline systems, and

machine-learning. A basic theoretical overview of the presented topics and some typical use cases for

selected open-source packages are given.

Finally, this review article proposes a strategy to increase collaboration among many researchers resulting

in highly-related future scientific packages. The purpose of this review is to help new researchers get started

in open-source-based signal processing, while those already active can learn the development principles for

better and interconnected scientific packages.

1. Introduction

Open-source scientific computing has a significant impact on the speed of scientific development. There

are several levels of collaboration in open-source development; the open release of the underlying code is

only the basic level with limited potential [1]. For a higher level of openness, it is important that the code is

developed publicly (including all communication) accepting changes and co-authors; it is also important that

decisions are communicated and made publicly [2]. For open-source projects, development and management

should ideally be shared between multiple institutions to ensure long-term stability [3]. Free licenses are

crucial for open-source-based research; they facilitate the seamless sharing and modification of code, data

and other resources, encourage collaboration and accelerate scientific progress. Without the freedom these

licenses provide, researchers would face barriers to accessing and building on existing work, hindering

innovation and limiting the potential impact of their discoveries.

The Python programming language [4] is easy to learn and used in various fields, including scientific com-

puting, due to its readability, versatility, open license and strong community support. There are several

essential Python packages for scientific computing, e.g. NumPy, SciPy, MatPlotLib, and SymPy. NumPy is

the main library for array programming with some basic array concepts that are essential for organizing, ex-

ploring and analyzing scientific data. NumPy is used in almost every Python library that performs scientific

or numerical computation [5]. SciPy builds on NumPy and is used for fundamental algorithms for scientific

computing; it supports for example: linear algebra, Fourier transforms, algorithms for numerical optimiza-

tion and integration, and functions for higher-level data analysis such as signal and image processing [2].
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MatPlotLib is a comprehensive library for creating static, animated and interactive visualizations in Python;

it is essential for creating high-quality plots for scientific publications [6]. SymPy is a computer-algebra

system written in pure Python, enabling one to manipulate and solve mathematical expressions and equa-

tions exactly. NumPy, SciPy, MatPlotLib and SymPy are used in approximately 5 million other packages (as

seen on the collaborative platform github.com); in addition, each of these three packages has approximately

1.5 thousand unique code contributors. According to pypistats.org, Numpy, Scipy, Matplotlib and SymPy

(combined) have more than 15 million daily downloads; the development power and spread of influence is

unmatched by any other commercial company.

Although these general-purpose scientific packages constitute a robust computational foundation, the sit-

uation within structural dynamics remains comparatively fragmented. Numerous research groups and in-

stitutions have independently developed domain-specific packages addressing particular sub-fields. This

fragmentation often results in redundancy of effort, heterogeneity of interfaces, and limited interoperabil-

ity, thereby constraining the ability of researchers to integrate complementary tools. To enhance scientific

efficiency and foster sustainable software ecosystems, it is imperative that the structural dynamics commu-

nity aligns its development practices. Beyond adherence to open-source principles, this alignment requires

the establishment of common standards for software design, documentation, and interoperability, thereby

enabling seamless interaction among packages and facilitating the broader dissemination and validation of

novel methodologies.

This article deals with selected packages that are used at the interface of signal processing and mechanical

systems. The packages are discussed in topic-related sections; in each section, a brief overview of the rele-

vant and current scientific literature is given first, followed by the presentation of one or more topic-related

Python packages. Sec. 2 discusses general signal-processing methods in the context of the SciPy pack-

age. Sec. 3 discusses experimental and operational modal analysis, particularly in relation to the pyEMA,

pyOMA, and KOMA packages. Sec. 4 discusses image processing-based experimental modal analysis, fo-

cusing on digital image correlation and related methods; packages discussed are pyIDI, pyMRAW, OpenCV,

Scikit Image and DICe. Sec. 5 discusses vibration fatigue and the associated packages fatpack, pyfatigue

and FLife. Rotordynamics is discussed in Sec. 6 and is related to the open-source package ROSS. Sec. 7

deals with substructuring and transfer path analysis and the implementation of these theories in the pyFBS

package. Sec. 8 gives an overview of the machine learning and selected Python packages like sklearn, Py-

Torch. Sec. 9 deals with vibration control theory and its implementation in the Rattlesnake package. The

Sections 10 and 11 are dedicated to two Graphical User Interface (GUI)-based frameworks for structural

4



dynamics in general and acoustically-induced vibration in pipeline systems, respectively. Finally, Sec. 12

presents the cross-institutional efforts on the SDyPy package, which aims to become the SciPy of structural

dynamics by providing a unified, extensible framework that integrates methods and tools across the diverse

sub-fields discussed in this article, thereby addressing the current fragmentation and promoting interoper-

ability within the community.
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List of Acronyms

• AI: Artificial Intelligence

• AIV: Acoustically-Induced Vibration

• CFD: Computational Fluid Dynamics

• CLI: Command Line Interface

• CSD: Cross Spectral Density

• DFT: Discrete Fourier Transform

• DIC: Digital Image Correlation

• DOF: Degree-Of-Freedom

• DS: Dynamic Substructuring

• EFDD: Enhanced Frequency Domain Decom-
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position

• EMA: Experimental Modal Analysis

• FBS: Frequency-Based Substructuring

• FDD: Frequency Domain Decomposition

• FEM: Finite Element Method

• FETM: Finite Element Transfer-Matrix

Method

• FFT: Fast Fourier Transform

• FRF: Frequency Response Function

• FSDD: Frequency-Spatial Domain Decompo-

sition

• GANs: Generative Adversarial Networks

• GPL: Genefral Public License

• GPU: Graphics Processing Unit

• GUI: Graphical User Interface

• ISC: Internet Systems Consortium

• JSON: JavaScript object notation

• LF: Low-Frequency

• LM-FBS: Lagrange Multiplier - Frequency

Based Substructuring

• LRF: Low-Reduced Frequency

• LSCF: Least-Squares Frequency Domain

technique

• LSFD: Least-Squares Complex Frequency

technique

• M-SEMM: modal system equivalent model

mixing

• MAC: Modal Assurance Criterion

• MIMO: Multiple-Input-Multiple-Output

• MISO: Multiple-Input-Single-Output

• MIT: Massachusetts Institute of Technology

• MMM: Mobility-Matrix Method

• OMA: Operational Modal Analysis

• PDF: Probability Density Function

• PLA: Polylactic Acid

• pLSCF: Poly-reference Least Squares Fre-

quency Domain

• PoSER: Post Separate Estimation Re-Scaling

• PreGER: Pre-Global Estimation Re-Scaling

• PSD: Power Spectral Density

• RAM: Random Access Memory

• RFC: Rainflow Counting

• ROI: Region of Interest

• ROSS: Rotordynamic Open Source Software

• SCADA: Supervisory Control and Data Ac-

quisition
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• SCF: Stress Concentration Factor

• SDOF: Single Degree of Freedom

• SEMM: System Equivalent Model Mixing

• SHM: Structural Health Monitoring

• SIMO: Single-Input-Multiple-Output

• SSIcov: Stochastic Subspace Identification

covariance-driven

• SSIdat: Stochastic Subspace Identification

data-driven

• SVD: Singular Value Decomposition

• SVT: Singular Vector Transformation

• TMM: Transfer-Matrix Method

• TPA: Transfer Path Analysis

• UPC: Unweighted Principal Component

• VAE: Variational AutoEncoders

• VAP: Virtual Acoustic Prototyping

• VPT: Virtual Point Transformation

2. General signal processing - SciPy.signal

This section briefly introduces the essential signal-processing tools, available in the SciPy package, with

basic theoretical background and use-case examples. This section should help researchers entering the field

of open-source research to understand the basic concepts of signal processing within the Python ecosystem.

Signal-processing methods have a rich history rooted in the need to analyze complex signals, especially

prevalent in applications for measuring vibrations. Joseph Fourier laid the foundation in the early 19th cen-

tury with the development of the Fourier series [7], a mathematical technique for converting signals between

the time and frequency domains. This was followed by the Discrete Fourier Transform (DFT), which made it

possible to apply Fourier analysis to digital data. In 1965, Cooley and Tukey [8] revolutionized the field with

the Fast Fourier Transform (FFT) algorithm, which drastically reduced the computational cost of the DFT

and made real-time signal analysis practical. Shortly after, Welch’s method emerged [9], offering a robust

approach to estimating power spectral density by averaging modified periodograms to reduce variance and

provide a clearer spectral estimate. In parallel to these methods, digital-filtering techniques were developed

to isolate and analyze specific frequency components within a signal [10]. Although these methods were

developed a long time ago and are well established, progress is still being made in this field. Recent publica-

tions have focused on new techniques and refinements that improve the precision and applicability of signal

processing in modern vibration measurement applications via novel approaches such as variational mode

decomposition [11] or piecewise power fitting [12]. Machine learning and Artificial Intelligence (AI)-based

methods are also regularly being developed to solve complex signal processing tasks for vibration analy-
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sis, utilizing techniques such as deep learning using convolutional neural networks [13, 14] or generative

diffusion models [15].

Among Python libraries for signal processing, SciPy, particularly its scipy.signal module, stands out

[2]. Since its 2001 launch, SciPy has become the de facto standard for signal processing and scientific

computing, offering FFT, spectral filtering, windowing, and convolution tools. It continues to evolve with

enhanced performance, Graphics Processing Unit (GPU) and distributed-computation support, and expanded

hardware compatibility as outlined in its roadmap [16].

This section outlines the concepts behind the fundamental signal-processing algorithms, as well as provides

short code examples to serve as a reference for their application in structural dynamics.

2.1. Spectral analysis

When dealing with dynamic systems and vibration measurements, one is usually interested in the frequency-

domain representation of the observed signals. The Fourier integral transform is used to transform continu-

ous signals between the time- and frequency-domains [17]. For finite discrete signals, typical for vibration

measurements, the Fourier integral transform becomes a summation over the N samples, acquired at discrete

time steps n∆t, called the DFT:

Xk =
N−1

∑
n=0

xn e−2π j k n
N , (1)

which transforms the discrete time signal xn, into its frequency-domain representation at discrete frequency

steps k ∆ f = k/(N ∆t) and j =
√
−1.

The FFT is an efficient algorithm for DFT computation, taking into account the periodicity and symmetry

of the DFT (1) [17]. Via the sub-module SciPy.fft, SciPy includes extensive tools for various spectral-

analysis related operations. The following code example computes the time-frequency transform of a syn-

thetic signal x:

from scipy import fft # Import SciPy 's fft module

X = fft.fft(x) / len(t) # FFT and normalize the amplitude scpectrum

freq = fft.fftfreq(len(t), d=1/fs) # Compute the frequency vector

The time- and frequency-domain representations of a signal x with two harmonic components at f1 = 10 Hz

and f2 = 20 Hz are shown in Fig. 1.

Another useful quantity when analyzing dynamic signals is the Power Spectral Density (PSD), helping to

estimate the signal’s power distribution across the frequency spectrum. A simple PSD estiamtor is the

periodogram [17, 18]:

Sxx( f ) =
1
T

X∗( f )X( f ), (2)
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Figure 1: Time- and Frequency-domain representations of a discrete signal.

where X( f ) is the Fourier transform of the signal and ∗ the complex conjugate operator.

Similarly, to observe the phase and amplitude relationships between two signals, the Cross Spectral Density

(CSD) is used, and can be estimated as:

Sxy( f ) =
1
T

X∗( f )Y ( f ). (3)

Although Eqs. (2) and (3) yield the correct spectral representations for deterministic signals, and are asymp-

totically unbiased for stationary ergodic processes, they exhibit high variance when applied to random data.

Since this variance does not decrease with increasing observation period, the estimators are considered

inconsistent [17]. When dealing with random signals and imperfect measurements in practice, Welch’s

method is used to improve the estimation of CSD and PSD [9]. It performs signal segmentation and aver-

aging of overlapping segments to reduce variance in the result at the expense of frequency-resolution. The

following code example computes the PSD of signal x with added random noise using Welch’s method in

scipy.signal.csd:

import numpy as np # import numpy

rng = np.random.default_rng ()

x_noise = x + rng.normal(0, 0.5, len(x)) # Generate noisy (Gaussian) signal

freq , Sxx = signal.csd( # PSD using Welch 's method

x_noise , x_noise , fs,

window='boxcar ', scaling='density ',
nperseg=100 , noverlap=50

)

Fig. 2 shows the signal x with added random noise and its one-sided PSD, computed using Welch’s method,

which matches that of the original signal well, despite the considerable level of added noise.

Another important tool, often used to counter the effects of spectral leakage when the acquired signal violates

the periodicity assumption of the DFT, is the use of windowing [17]. More than 20 different windowing
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Figure 2: Synthetic signal x with added noise and its PSD, computed using Welch’s method.

functions are included in Scipy and can be selected via the window parameter in the above example.

2.2. Filtering

Spectral-filtering techniques are employed to remove unwanted noise from vibration data, isolating rele-

vant frequency components and improving the clarity and accuracy of measurements. A code example of

implementing a digital band-pass filter, removing frequency content significantly below and above the first

harmonic component of the noisy signal x, is shown below, with the results illustrated in Fig. 3:

from scipy import signal

# Design a band -pass Butterworth filter

sos = signal.butter(N=3, Wn=[7, 13], btype='bandpass ', fs=fs, output='sos')

# Apply the digital filter to noisy signal (forward and backward)

x_filtered = signal.sosfiltfilt(sos , x_noise)

Figure 3: Digital filter design (a) and filtering results (b).

3. Experimental and operational modal analysis

Experimental and operational modal analysis focuses on the estimation of the modal parameters, i.e. the

natural frequencies, the modal shapes and the damping. The input data for the Experimental Modal Analysis
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Figure 4: An example of a Frequency Response Function.

(EMA) are the Frequency Response Function (FRF) of different dimensions: Single-Input-Multiple-Output

(SIMO), Multiple-Input-Single-Output (MISO), Multiple-Input-Multiple-Output (MIMO). Depending on

the measured FRFs, the EMA algorithm differs. Some of the first algorithms are the half-power method,

circle fitting and others [19].

Since the Least-Squares Frequency Domain technique (LSCF) [20] and Least-Squares Complex Frequency

technique (LSFD) [21] methods have been presented, the combination of the two is a preferred approach

for modal parameter identification. When the MIMO FRFs are available, the Poly-reference Least Squares

Frequency Domain (pLSCF) [22] algorithm can be used, taking advantage of the redundancy of information

contained in the FRFs.

Three packages are discussed in the subsections: SDyPy.EMA, pyOMA2 and KOMA. The first package is

used for experimental modal analysis, while the other two are intended for operational modal analysis. While

pyOMA2 is a more complete and object-oriented package, KOMA is a simpler and procedural package.

3.1. SDyPy.EMA

This section discusses the EMA sub-package of the SDyPy (Structural Dynamics Python) package. The

package is developed at Github (https://github.com/sdypy/sdypy) and has an Massachusetts Institute

of Technology (MIT) licence which lets people use, copy, modify, and distribute software freely, as long

as they include the original license and copyright notice. SDyPy.EMA (can also be installed separately as

pyEMA) provides a simple interface for estimating the modal parameters from the given FRF. The package

uses a combination of the algorithms LSCF [22] and LSFD [21]. The LSCF algorithm is used to estimate

the complex-valued natural frequencies using a least-squares estimation of the rational polynomial function:

Ĥk(ω) =
∑

n
j=0 Ω j(ω)Bk j

∑
n
j=0 Ω j(ω)A j

. (4)

11

https://github.com/sdypy/sdypy


In Eq. (4), A j and Bk j are the coefficients to be estimated. The estimation can be performed efficiently using

the Fourier transform as described by Guillaume et al. [22]. The roots of the polynomial (4) are the complex

eigenfrequencies of the system defined after conversion from the z-domain:

λr =−ζr ωr ± jωr

√
1−ζ 2

r , (5)

where ζr and ωr are the damping ratio and the radial natural frequency corresponding to the r-th mode.

Once the natural frequencies and damping of the system are identified, the LSFD method [21] is used to

identify the modal shapes. The leading equation of the LSFD method is:

Ĥ j(ω) =
Nm

∑
r=1

( Ar, j

jω −λr
+

A∗
r, j

jω −λ ∗
r

)
− AL

ω2 +AU , (6)

where Ĥ j(ω) is the measured FRF at location j at frequency ω . Ar, j is the complex-valued r-th modal

constant at location j, λr is the r-th complex-valued eigenfrequency and AL and AU are the lower and upper

residuals, respectively. The residuals are used to simulate the effect of the modes that lie outside the range

of ω . ∗ denotes the complex conjugate. The modal constants Ar, j are estimated by the least-squares method

at all available locations j and the frequency range of interest (ω ∈ [ωstart,ωstop]).

SDyPy.EMA uses the efficient implementation of LSCF and LSFD. Using the package is simple. First, the

object of Model is created:

from SDyPy import EMA

model = EMA.Model(frf_matrix , frequency_array , lower=50 ,

upper=10000 , pol_order_high=60)

The FRF matrix is passed to the class Model. The FRF matrix has the shape (NLOC ×Nfreq), where NLOC

is the number of locations at which the FRF is known and Nfreq is the number of frequency points at which

the FRF is measured. frequency_array defines the Nfreq frequencies at which the FRF is known. The

arguments lower and upper define the lower and upper limits of the frequency range that is taken into

account in the estimation. The argument pol_order_high is the polynomial order up to which the order is

increased.

Next, the poles are computed using LSCF method. In SDyPy.EMA, this is done by calling:

model.get_poles ()

Once the poles have been identified, the stable poles can either be selected using the stability card:

model.select_poles ()
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or by making initial assumptions about where the poles are located:

model.select_closest_poles([300 , 350])

The final step in the EMA process is the identification of the modal constants using the LSFD algorithm:

model.get_constants ()

The modal parameters are then accessible via:

model.nat_freq # natural frequencies

model.nat_xi # damping coefficients

model.A # modal constants

For more information, see the documentation https://sdypy-ema.readthedocs.io/en/latest/

3.2. pyOMA and pyOMA2

pyOma2 is a significantly-updated version of the pyOMA module [23] specifically designed to perform

Operational Modal Analysis (OMA). pyOMA2 is developed on Github (https://github.com/dagghe/

pyOMA2) and uses the MIT license. pyOMA2 supports the following algorithms: Frequency Domain Decom-

position (FDD) [24], Enhanced Frequency Domain Decomposition (EFDD) [25], Frequency-Spatial Domain

Decomposition (FSDD) [26], and both the Stochastic Subspace Identification covariance-driven (SSIcov)

and Stochastic Subspace Identification data-driven (SSIdat)) [27, 28, 29], as well as the pLSCF technique,

also known as Polymax [22, 30]. In addition, it supports the analysis of single and multi-setup measure-

ments, including the processing of multiple acquisitions with a mixture of reference and roving sensors. The

multi-setup analyzes can be performed with the so-called Post Separate Estimation Re-Scaling (PoSER) ap-

proach as well as with the so-called Pre-Global Estimation Re-Scaling (PreGER) approach [31, 32, 33, 34].

The module now includes interactive plots to select the modes for extraction directly from the plots gen-

erated by the algorithm. Users can also define the geometry of the tested structures, which facilitates the

visualization of the mode shapes. For the SSI algorithms it is also possible to get the uncertainty bounds of

the identified modal properties [33].

The following summarizes the theoretical background for the algorithms included in the module.

Stochastic Subspace Identification (SSI). The state-space representation of the output-only vibration-based

structural monitoring leads to the following discrete-time model:

xr+1 = Axr +vr

yr = Cxr +wr

, (7)
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where xr ∈ Rn, yr ∈ Rl , A ∈ Rn×n and C ∈ Rl×n are the state vector, the output vector, the state transition

matrix and the observation matrix, for the r-th sample, respectively. In addition, l is the number of monitored

degrees of freedom (DOFs) and n is the order of the system. The excitation vr is the process noise and wr is

the measurement noise [27].

Numerous algorithms for stochastic subspace identification are presented in the literature [27, 28, 29], all of

which differ in how they construct the subspace matrix Hp+1,q from the data. In the following, we stick to the

notation shown in [29, 33], as it is also used in pyOMA2. Given parameters p and q such that pl ≥ ql ≥ n, a

matrix Hp+1,q ∈R(p+1) l×ql is constructed from the output data according to the selected subspace algorithm.

Let N + p+q represent the total number of available samples, then the data matrices are defined as follows:

Y+ =
1√
N


yq+1 yq+2 . . . yN+q

yq+2 yq+3 . . . yN+q+1
...

...
...

...

yq+p+1 yq+p+2 . . . yN+p+q

 , Y− =
1√
N


yq yq+1 . . . yN+q−1

yq−1 yq . . . yN+q−2
...

...
...

...

y1 y2 . . . yN

 . (8)

For covariance-driven SSI, the block Hankel matrix can be calculated from the empirical correlations, Rbi =

1
N(i) ∑

N
k=1 ykyT , or as shown in [35, 28] as:

Ĥcov = Y+
(
Y−)T

. (9)

For data-driven SSI with the Unweighted Principal Component (UPC) algorithm, the block Hankel matrix

is defined as follows [27]:

Ĥdat = Y+
(
Y−)T

(
Y− (

Y−)T
)†

Y−, (10)

where the symbol † denotes the Moore-Penrose pseudo-inverse. For all subspace-identification algorithms

the subspace matrix Hp+1,q can be decomposed into the extended observability, Op+1, and extended con-

trollability matrices, Zq:

Hp+1,q = Op+1Zq, (11)

where:

Op+1 =


C

CA
...

CAp

 , (12)
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while Zq depend on the selected subspace algorithm. The observation matrix C is then found in the first

block-row of the observability matrix, while the state transition matrix A is obtained from the shift invariance

property of the observability matrix.

O↑
p+1A = O↓

p+1, where O↑
p+1 =


C

CA
...

CAp−1

 , O↓
p+1 =


CA

CA2

...

CAp

 . (13)

The modal parameters of the system (i.e. natural frequencies, damping ratios and mode shapes) can thus be

estimated from the identified system matrices A and C. First, the eigenvalue decomposition of A leads to the

diagonal matrix Λ of the discrete-time system poles λu and the corresponding right eigenvectors ψu:

A =ΨΛΨ−1, Aψu = λuψu, (14)

with 1 ≤ u ≤ m, where m is the total number of eigenvalues of interest. The undamped natural frequencies

fu and the damping ratios ξu (in %) are finally determined as follows:

λc,u =
ln(λu)

∆t
, fu =

|λc,u|
2π

, ξu =−100
Re(λc,u)

|λc,u|
, (15)

where λc,u are the continuous-time system poles, ∆t is the sampling interval, | · | denotes the complex modu-

lus and Re(λc,u) is the real part of λc,u. The real part of the eigenvectorsψu instead leads to the experimental

mode shapes ϕu:

ϕu =Re(Cψu). (16)

FDD. The theory of the FDD technique is based on the formula of the input and output PSD relationship

for a stochastic process [36]:

Gyy(ω) = H(ω)Gxx(ω)H(ω)H, (17)

where Gxx(ω), Gyy(ω) are input and output PSD matrices, respectively. H(ω) is the Frequency Response

Function matrix, which can be expressed as a partial-fractional form over poles and residuals, as already

shown in Eq. (6). The H operator denotes the conjugate transpose. The first step involves estimating the PSD

matrix [24], commonly achieved in practical applications using the Welch method [9, 36]. The estimation

of the SD matrix in pyOMA2 is facilitated by wrapper functions that utilize the SciPy [2] signal.csd()

function, as introduced in Sec. 2.1. The estimate of the output PSD Ĝyy(ω), which is known at discrete
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frequencies ω = ωk, is then decomposed by the Singular Value Decomposition (SVD) of the matrix:

Ĝyy(ωk) = Uk Sk VH
k = Uk Sk UH

k , (18)

where Uk and Vk are the unitary matrices containing the left and right singular vectors, and Sk is the matrix of

singular values. For a Hermitian and positive-definite matrix such as the PSD matrix Vk = Uk, a comparison

between Eq. (17) and Eq. (18) suggests a relationship between the singular vectors and the mode shapes.

When only one mode dominates at frequency ωk, this relationship becomes one-to-one, as the PSD matrix

approximates a rank-one matrix. Furthermore, the singular values are associated with the modal responses

and can be used to define the spectra of equivalent Single Degree of Freedom (SDOF) systems. Assuming

that only one mode is dominant at frequency ωk, the PSD matrix approximates a matrix of rank one, and in

such cases the first singular vector u1 is an estimate of the mode shape ϕ̂= u1.

EFDD. In the enhanced version of this method, the EFDD [25], the comparison of the mode-shape esti-

mation at frequency lines around the peak leads to the identification of the singular values whose singular

vectors have a correlation higher than a user-defined threshold, the so-called Modal Assurance Criterion

(MAC) Rejection Level. Such singular values define the equivalent SDOF PSD function and this is then

used to obtain the modal damping ratio and to obtain estimates of the natural frequency independent of the

frequency resolution of the spectra [31, 32].

Poly-reference LSCF method. The poly-reference LSCF method (Polymax) is an extension of the LSCF

algorithm introduced in Sec. 3.1. In contrast to the common-denominator model adopted by the LSCF

estimator the poly-reference LSCF uses a right matrix fraction description [22, 21, 30], which implies that in

addition to the pole information (i.e. frequency and damping), also modal participation factors are estimated.

Once the poles and participation factors have been determined, the LSFD estimator can be used to directly

estimate the mode shapes avoiding the SVD required when using the LSCF estimator. The fundamental

difference between the EMA and OMA approaches lies in the fact that for EMA the FRFs are used while in

OMA the output PSD matrix.

pyOMA2 package organization. The package is structured into three class levels: 1. setup classes: specify-

ing a data array and sampling frequency for a single-setup scenario or a list of data arrays and their respective

sampling frequencies for a multi-setup scenario. 2. Algorithm classes. 3. Support classes: auxiliary com-

ponents for the first two levels (e.g.: saving geometric data, animating mode shapes). Fig. 5 shows the

schematic of the module structure and the inheritance relationships between the classes.
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pyoma2.setup.base

Abstract class

pyoma2.algorithms.base
BaseAlgorithm

Abstract class

pyoma2.setup.single

Single setup class

pyoma2.algorithms.fdd.
EFDD

EFDD algorithm class single setup 

pyoma2.algorithms.fdd.
EFDD_MS

EFDD algorithm class multi setup 

pyoma2.algorithms.fdd.
FDD

FDD algorithm class single setup 

pyoma2.algorithms.fdd.
FDD_MS

FDD algorithm class multi setup 

pyoma2.algorithms.fdd.
FSDD

FSDD algorithm class single setup

pyoma2.setup.multi
MultiSetup_poSER

Multiple setup class poSER

pyoma2.setup.multi
MultiSetup_PreGER

Multiple setup class preGER

pyoma2.algorithms.ssi.
SSIcov

SSIcov algorithm class single setup

pyoma2.algorithms.ssi.
SSIcov_MS

SSIcov algorithm class multi setup

pyoma2.algorithms.ssi.
SSIdat

SSIdat algorithm class single setup 

pyoma2.algorithms.ssi.
SSIdat_MS

SSIdat algorithm class multi setup 

pydantic.main.BaseModel

Abstract class pyoma2.support.
sel_from_plot

Interactive mode selection class

pyoma2.support.
utils

Utilities

pyoma2.algorithms.data.
result.BaseResult

Abstract class

pyoma2.algorithms.data.
result.FDDResult

FDD results class
pyoma2.support.
geometry.plotter

Base plotter class 

pyoma2.support.
geometry.mpl_plotter

Matplotlib mode shape plotter

pyoma2.algorithms.data.
result.EFDDResult

EFDD/FSDD results class

pyoma2.algorithms.data.
result.pLSCFResult

pLSCF result class

pyoma2.algorithms.data.
result.SSIResult

SSI results class

LEVEL 1:
Setup classes

LEVEL 2:
Algorithm classes

LEVEL 3:
Support classes

pyoma2.algorithms.ssi.
pLSCF_MS

pLSCF algorithm class multi setup

pyoma2.algorithms.plscf.
pLSCF

pLSCF algorithm class single setup

pyoma2.support.
geometry.pyvista_plotter

Pyvista mode shape plotter

pyoma2.algorithms.data.
result.MsPoserResult

Multiple setup poSER result class

pyoma2.algorithms.data.
run_params.EFDDRunParams

EFDD/FSDD run parameters class

pyoma2.algorithms.data.
run_params.FDDRunParams

FDD run parameters class

pyoma2.algorithms.data.
run_params.SSIRunParams

SSI run parameters class

pyoma2.algorithms.data.
run_params.pLSCFRunParams

pLSCF run parameters class

pyoma2.support.
geometry.data

Class to manage geometry data

pyoma2.support.
geometry.mixin

Mixin to manage methods for setup 

Figure 5: Schematic structure of the pyOMA2 with inheritance between classes.
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Example. Here the use of the module for a single setup scenario is demonstrated: The process starts with

importing the necessary modules.

from pyoma2.setup import SingleSetup

from pyoma2.algorithms import SSIcov , FDD

ss = SingleSetup(data , fs=100) # create single setup

Once the dataset has been imported and assigned to a variable, the next step is to create an instance of the

SingleSetup class with the dataset and sampling frequency as parameters. This instance provides access

to methods for evaluating the quality of the dataset and for performing preprocessing operations such as

plot_ch_info() and filter_data().

fdd = FDD(name="FDD", nxseg=1024) # Initialise the algorithms

ssicov = SSIcov(name="SSIcov", br=30 , ordmax=30) # Initialise the algorithms

ss.add_algorithms(fdd , ssicov) # Add algorithms to the single

setup class

ss.run_all () # Run all or run by name

The users then instantiate the algorithm classes of their choice, such as FDD and SSIcov. These algorithms

are added to the setup class using the add_algorithms() method. The algorithms can either be executed

individually with the method run_by_name() or collectively with run_all(). After the algorithms have

been executed, methods such as plot_CMIF() and plot_stab() are used to visualize the results.
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Figure 6: (a) Plot of the singular values of the PSD matrix (b) Stabilisation chart for increasing model order.

These diagrams can be accessed interactively via the mpe_from_plot() method. The method allows users

to extract the desired modes directly from the plots.

fig , ax = fdd.plot_CMIF(freqlim=(0,8))

fig1 , ax1 = ssicov.plot_stab(freqlim=(0,8), hide_poles=False)

ss.mpe_from_plot("FDD") # Select modes to extract from plots

ss.mpe_from_plot("SSIcov") # Select modes to extract from plots

fdd.result.Fn # access results
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ssicov.result.Fn # access results

Alternatively, the modal properties can also be extracted manually using the mpe() method. Once the modes

have been extracted, the results can be accessed via the Result class of the corresponding algorithms.

Further information can be found in the documentation https://pyoma.readthedocs.io/en/main/.

3.3. KOMA

The Python package KOMA [37] offers much of the same functionality as pyOMA2; however, it is easier to

use and less complete. In contrast to the object structure of pyOMA2, the most important calculations are

performed in a procedural way. This feature could speed up the integration into a custom setup, but would

require the use of other scientific Python libraries such as scipy for the required processing and more custom

code. So far, only single analyzes are supported, so multi-setup analyzes would usually require custom

morphing of mode shapes from different analyzes. The source code of KOMA is available on GitHub

(https://github.com/knutankv/koma) and is released under MIT license.

The OMA algorithms SSI-cov and FDD, which have already been described in the Sec. 3.2, are supported.

Peak picking in FDD and pole selection in SSI can be performed by interactive plots based on matplotlib

, while visualization of the mode shape (animation and plotting) relies on the Python package pyvista.

Automatic OMA is implemented as described in [38]; it is based on the clustering algorithm HDBSCAN

(Hierarchical Density-Based Clustering Algorithm with Noise) introduced in [39] and its Python package

hdbscan.

Assuming that a data matrix data with a sampling rate fs is given, the workflow of the SSI-cov analysis

would typically look as follows:

from koma.oma import covssi , find_stable_poles

# Defining SSI parameters

i = 50 # block rows

orders_input = np.arange(2, 60+2, 2)

# Defining stabilization parameters

stabcrit = {'freq':0.05, 'damping ': 0.2, 'mac': 0.2}

s = 2 # number of consequtive stable poles

# Running SSI -cov and filtering of poles based on stabcrit

lambd , phi , orders = covssi(data , fs, i, orders_input)

lambd , phi , orders , __ = find_stable_poles(lambd , phi , orders , s,

stabcrit=stabcrit ,

indicator='freq')

Then the modes can be selected from the poles, which are represented as eigenvalues in lambd and eigen-

vectors in phi, either by defining and executing an interactive stabilization plot:
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from koma.plot import StabPlotter

stab_plotter = StabPlotter(lambd , orders , phi=phi , freq_unit='hz')
fig = stab_plotter.get_fig ()

or by automatic selection:

from koma.clustering import PoleClusterer , group_clusters

pole_clusterer = PoleClusterer(lambd , phi , orders ,

min_cluster_size=15, min_samples=15)

pole_clusterer.cluster ()

outputs = pole_clusterer.postprocess ()

xi, omega_n , phi , orders , ixs , probs = group_clusters(*outputs)

For more information and examples of usage, see the documentation at https://knutankv.github.io/

koma/.

4. High-speed Camera Based Experimental Modal Analysis

The identification of modal parameters of vibrating structures using optical methods such as high-speed

cameras has undergone significant development in the last decade [40, 41]. The identification process is

based on displacements in captured digital images, and successful displacement identification usually re-

quires the application of (speckle) patterns on the surface of the vibrating object. Pattern matching [42] is

used in most image-based displacement measurement applications. However, for vibration measurements,

where the motion is usually far below the pixel range, the simplified optical flow [43] approach is usually

faster and offers the potential for higher accuracy [44].

For coordinates (x, y), the optical flow method identifies the displacement ∆x, ∆y from the changes in light

intensity between two time steps I(x, y, t) and I(x, y, t +∆t) [41]:

I′x ∆x+ I′y ∆y = I(x, y, t)− I(x, y, t +∆t) , (19)

where I′x,y is a spatial gradient in the x and y directions. Two important assumptions are made: 1) the light

intensity and the observed pattern must be constant during the movement, and 2) there is a linear relationship

between the change in pixel intensity and the displacement, which usually limits the applicability of the

method to sub-pixel displacements.

In general, due to the aperture problem, the identification of displacements cannot be based on a single pixel

and surrounding pixels are needed [45]. Complex image scenes may require smoothing to linearize the

spatial gradient [43]. When certain patterns are applied to the measured surface that produce a high spatial
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gradient only in the direction of motion, the optical flow Eq. (19) can be simplified for use with only one

pixel [41, 46]:

q(x, y, t) =
I0(x, y)− I(x, y, t +∆t)

I′0
, (20)

where I0(x, y) is the reference image and I′0 is the spatial gradient in the direction of motion.

The concept of pattern matching was first developed by Lucas and Kanade [42]. It is a method for identi-

fying local displacement in digital video based on minimizing the difference in the relatively-small Region

of Interest (ROI) between two consecutive images. Under the same assumptions as for optical flow, the

following relationship can be established between the pixels within the ROI for the time step ∆t to identify

the displacement [47]:∆x

∆y

=−

∑ I′xI′x ∑ I′xI′y

∑ I′xI′y ∑ I′yI′y

−1∑ I′x

∑ I′y

(
I0(x, y)− I(x, y, t +∆t)

)
, (21)

where the summations are performed over all pixels in the ROI. This method is further expanded and im-

proved in [48]; it serves as the basis for Digital Image Correlation (DIC), which is the most commonly-used

method for identifying displacements [49].

The development of new methods and the improvement of current methods for measuring vibrations from

video recordings is still an important research topic. It is attractive that optical methods using high-speed

cameras allow non-contact, full-field displacement measurements with relative ease [40]; they are used in

many areas of structural dynamics and more recently in vibroacoustics [50], where they have been suc-

cessfully used to reconstruct the sound radiation field [51]. Some examples of full-field measurements [52]

when the displacements are below the resolution of the camera sensor [53] are: the identification of elastic

properties of soft tissues [54], crack detection using digital image correlation with the support of deep learn-

ing [55], and the measurement of long-span bridges [56]. Both methods, simplified optical flow and DIC,

continue to be actively developed and improved. Optical flow-based EMA can be significantly improved

with the hybrid method [44] where the global parameters (natural frequencies and damping ) are identified

by a high dynamic range sensor and the mode shapes are identified by the camera [47]. Recent advances in

the optical flow method have been made in modal identification via the development of an adaptive spatial

filtering algorithm [57] and in the identification of nonlinearities in the response of civil structures due to

dynamic loading during catastrophic events [58]. A noise-resistant optical flow method for vibration mea-

surement is developed by [59] based on the combination of multiple intensity signals within an ROI. A deep

learning-assisted optical flow with Bayesian analysis for real-time displacement identification is developed
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by [60]. The interpolation of the subpixel gray values in DIC was adjusted in [61] using the skin patterns to

identify displacements. The interpolation scheme was also investigated by [62] to improve the DIC results.

The influence of image-compression algorithms on the quality of speckle patterns for displacement identi-

fication was investigated by [63]. Recent advances in displacement identification include the development

of Directional Digital Image Correlation (D-DIC), which solves the aperture problem of conventional DIC

by assuming localized, unidirectional motion, allowing for more trackable localization and improved modal

identification for structures without speckle patterns[64]. Such lively research activity is the main motive

for open-source software packages, which are intended to serve as a platform for other researchers. Video

processing methods can be difficult to implement, and making the basic methods available as open-source

software libraries facilitates research into the methods and provides a starting point for researchers to learn

the methods from scratch or to have a verifiable tool that can serve as a benchmark for their particular closed

solutions [40].

4.1. pyIDI

Python Image Displacement Identification (pyIDI) is an open-source package developed by the structural

dynamics community. The package was developed with the goal of providing an open-source displacement

identification from high-speed video recordings, primarily aimed at researchers working on computer vision

methods in structural dynamics. The source code is available on GitHub (https://github.com/ladisk/

pyidi) and published under MIT license. Two main methods for identifying displacements are included,

one is the simplified optical flow [41] and the second is based on the Lucas-Kanade [42] pattern-matching

algorithm. The package is modular so that other researchers can contribute to it. Basic usage requires the

creation of the instance in which the video file is deployed:

from pyidi import VideoReader

video = VideoReader(input_file='video.ext')

where ext can be one of the various supported media formats, e.g. .cih, .cihx, .png, .avi or numpy.ndarray.

The next step is to select the method of displacement identification. This is done by importing the method

class and creating an instance:

from pyidi import LucasKanade , SimplifiedOpticalFlow

idi = LucasKanade(video)

The next step is to select the points of interest for tracking, which can be done manually using an array of

(y,x) pixel coordinates:
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points = np.array([ [1, 2],

[1, 5],

[2, 10] ])

where the first column indicates indices along axis 0 and the second column indices along axis 1. The

points are then passed to the created method object:

idi.set_points(points)

The created method object (idi) can be configured:

idi.configure(*args , ** kwargs)

The available arguments are documented in the configuremethod. To identify displacements, the get displacements

method is called:

displacements = idi.get_displacements ()

The displacements identified at the selected points are returned as numpy.ndarray objects with the shape

(npoints, nimages, 2), where the last axis of the array contains the displacements of the selected points in

the y (axis=0) and x (axis=1) directions.

4.2. speckle pattern

In order for the methods defined by the Eq. (20) and (21) to work correctly, the surface of the observed object

must have special characteristics. Depending on the identification method, either strong spatial gradients in

the direction of motion are required or the object must have high-contrast features that are unique on small

subsets. A simple way to achieve this is to print a specially-designed pattern on self-adhesive paper and affix

it on the observed surface. To design a special pattern and customize the shape and quality of the pattern,

the open-source software package speckle-pattern can be used. Its source code is available on GitHub

(https://github.com/ladisk/speckle_pattern) and published under MIT license.

The simplified optical-flow method requires patterns that have a high spatial gradient in the direction of

movement. This is usually a zebra pattern, where the lines are perpendicular to the direction of movement.

To create such a pattern, the function generate lines can be used:

from speckle_pattern import generate_lines

image_height = 50 # mm

image_width = 100 # mm

line_width = 5 # mm

dpi = 200 # print resolution

orientation = 'horizontal ' # horizontal or vertical

23

https://github.com/ladisk/speckle_pattern


lines_image = generate_lines(image_height , image_width , dpi ,

orientation=orientation , line_width=line_width ,

path='lines.jpg')

If the movement is to be measured in two directions, then a high gradient in two perpendicular directions

is required. The checkerboard pattern is well suited for this purpose. Based on the previous example, the

following code can be used to generate an image of a checkerboard pattern:

from speckle_pattern import generate_checkerboard

checkerboard_image = generate_checkerboard(image_height ,

image_width , dpi , line_width=line_width ,

path='checkerboard.jpg')

The methods based on pattern matching track a small subset (ROI) of the object. It is important that this

small subset is unique on the object in order to be distinguishable for the algorithm. Usually a speckle

pattern with random order, size and density is used for this purpose. Such patterns can be generated with the

following code:

from speckle_pattern import generate_and_save

speckle_diameter = 3 # mm

speckle_image = generate_and_save(image_height , image_width ,

dpi , speckle_diameter , path='speckle.jpg')

Further adjustments to the speckles are possible; this is achieved with additional arguments of the function

generate and save(), which are displayed here with their default values:

size_randomness = 0.5 # speckle size variety

position_randomness = 0.5 # speckle position variety

speckle_blur = 1 # Gaussian smoothing kernel size

grid_step = 1.2 # approximate grid step ,

# in terms of speckle diameter 'D'

Two speckle-pattern images generated with different parameters are shown in Fig. 7.

4.3. pyMRAW

Commercially-available high-speed cameras often store video data in proprietary file formats, which must

first be decoded accordingly in order to obtain the pixel intensities. When using Python’s standard numerical

tools, the pixel intensities are expected to be stored in array format, usually with three dimensions: Number

of images, image height, image width. However, the data recorded by the high-speed camera can amount

to hundreds of gigabytes. This data should be accessed effectively by reading it from the storage device di-

rectly whenever possible, rather than storing it entirely in the computer’s working memory (Random Access

Memory (RAM)).
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Figure 7: Two examples of custom speckle-pattern images, generated using speckle-pattern package.

Photron is one of the leading manufacturers of high-speed and ultra-high-speed cameras, which are fre-

quently used in research and engineering applications. The mraw file format is used to store raw video data

recorded with Photron high-speed cameras. mraw files are delivered together with a cih or a cihx meta-

data files that contain the video-recording information such as frame size, bit depth, frame rate, etc. The

mraw file itself stores the recorded image data in a binary format. The pyMRAW package, with source

code available on GitHub (https://github.com/ladisk/pyMRAW) under the permissive MIT license,

was written to efficiently deal with mraw image data. PyMRAW uses Numpy’s memory mapping function-

ality (numpy.memmap) to create a memory map to the video data stored in the mraw binary file, so that large

amounts of image data do not need to be loaded into the computer’s memory. To get the video data from the

mraw file, the user provides the load video() function with the path to the cih/cihx metadata file, stored

next to the mraw file:

import pyMRAW

video , info = pyMRAW.load_video('data/beam.cihx')

For example, in the case of 16-bit image data, the object video is a memory-mapped array of data type

uint16 and shape (nimages, height, width), and info is a dictionary of metadata read from the file

cihx that can be easily displayed and manipulated using standard Python dictionary operations.

The memory-mapped video array behaves like an ordinary numpy.ndarray object and is accepted as input

in all workflows where a Numpy array is accepted. For example, its frames can be displayed using Python’s

matplotlib plotting library:

import matplotlib.pyplot as plt

first_image = video[0]

plt.figure ()

plt.imshow(first_image , cmap='gray')
plt.show()
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which produces the image shown in Fig. 8.

Figure 8: An image read using the pyMRAW package.

PyMRAW also includes the basic functionality to save the custom image data in the mraw format using

pyMRAW.save mraw():

random_images = np.random.randint(low=0, high=255 ,

size=(10 , 64, 64), dtype=int)

info_dict = {'Record Rate(fps)': 25,

'Total Frame': random_images.shape[0],

'Image Width': random_images.shape[2],

'Image Height ': random_images.shape[1],

'Comment Text': 'Randomly generated images.',
}

mraw_file , cih_file = pyMRAW.save_mraw(

images=random_images ,

save_path='random.mraw',
bit_depth=8,

info_dict=info_dict

)

The expected image format is an appropriately shaped, (nimages, height, width), integer array. The

argument info dict is a dictionary of metadata that one wants to assign to your video. It uses default values

for the most important metadata entries required to display the mraw video with Photron’s PFV software if

they are not provided via info dict.

4.4. OpenCV-Python

The open-source Computer Vision Library is an open-source library containing more than 2500 algorithms

for various operations on digital images, as well as some common machine-learning techniques for image

processing. It was developed to support commercial products dealing with computer vision and the code is

released under the Apache 2 license. The library was originally developed in C++ and OpenCV-Python is

a Python wrapper for the original implementation. The library’s algorithms are intended for real-time use,

which means that the algorithms are optimized for fast execution. Common image-processing actions, such

as edge detection, image filtering, affine transformation, etc., can be very useful for structural dynamics
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applications. Feature detection and matching methods, implemented in OpenCV, can be used for tasks

such as extrinsic camera parameter determination and 3D geometry triangulation. ArUco marker detection

is another useful feature when implementing algorithms for precise positioning based on digital images

with OpenCV [65]. The library also implements several efficient object tracking and optical flow detection

algorithms that can be useful in certain motion-detection workflows.

The OpenCV-Python package source code is available on Github (https://github.com/opencv/opencv-python)

under the MIT license.

4.5. Scikit Image

This is an open-source image processing library developed by the Python community. The library is released

for the Python programming language under the BSD open-source License and is well suited for use in

research and teaching. Due to permissive licensing and robust implementation of many standard image

processing operations, it is also suitable for industrial applications [66]. Compared to OpenCV-Python,

Scikit Image is less suitable for real-time machine vision applications, but offers a more Pythonic approach

to image processing algorithms, many of which can be useful for structural dynamics applications.

The Scikit Image package is developed on Github (https://github.com/scikit-image/scikit-image)

and uses the BSD-3-Clause license.

4.6. Digital Image Correlation Engine (DICe)

DICe is a cross-platform tool developed by Sandia National Laboratory for the complete identification of

displacements and strains [67]. It is written in C/C++ and can be used freely under the specific license

conditions. It is based on the Lucas-Kanade [42] pattern-matching method, with many improvements to the

original method implemented [48, 49]. Some advanced features that have been implemented are: arbitrary

shape of ROI, convolution-based interpolation functions, two optimization approaches for pattern matching:

gradient-based and simplex-based, etc. The tool can be used as a standalone program (via GUI or Command

Line Interface (CLI)) or as a plug-in in larger applications.

The DICe package is developed on Github (https://github.com/dicengine/dice).

5. Vibration fatigue

Material fatigue is the process by which a crack develops and grows via repeated loading of the material.

Above a certain crack length, the remaining cross-section can no longer withstand the loads and the entire
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specimen fails. When planning and assessing structural fatigue, there are typically three different approaches

to determine the state of material fatigue i. e. stress-life, strain-life, and fracture mechanics.

The focus here is on the stress-life approach as it covers the high-cycle fatigue which is common in vibra-

tion fatigue. The stress-life method is a phenomenological approach that builds on the concepts of fatigue

resistance and damage.

Fatigue strength is the resistance of the structure to fatigue cracks. It is usually determined by cyclic loading

of a specimen with a constant amplitude and recording the number of cycles to failure. The specimens

can be very different, e.g. they can be a smooth, notch-free piece of material or a full-size structure. In

addition, the specimens may be exposed to different environments, (e.g. air at room temperature or salt

water) which has inherent stress concentrations and a corrosive environment. Fatigue strength therefore

describes the resistance against constant amplitude loading of a specific component and environment, which

has the advantage that the nominal stresses can be used to evaluate fatigue-life. Experiments show that the

Basquin equation [68] describes the fatigue strength for the whole domain or as a piecewise function for

disjoint parts of the domain [69]:

N(∆σ) =

C1∆σ−b1 for ∆σ > ∆σc,and

C2∆σ−b2 elsewhere,
(22)

where Ci,bi are parameters for fatigue strength determined from experiments, N(∆σ) is the number of cycles

to failure in the stress range ∆σ and ∆σc is a limit stress range which splits the domain.

In general, the dynamics stress of the material in a real structure is not a harmonic load with a constant

amplitude. It is therefore necessary to extract load ranges from the variable-amplitude loading and then

combine these load ranges with the fatigue-life model for constant-amplitude loading to determine fatigue

damage of the structure.

The varying-amplitude stress signal is cycle-counted. Several cycle-counting algorithms have been proposed

to extract stress ranges, but the de-facto standard is the rainflow cycle counting algorithm [70, 71].

In addition, the actual stress level of a stress range ∆σ = |σ1 −σ2| has a great influence on the extent of

fatigue damage it causes in the material. A pure compressive stress range (σ2 < 0) does not open the fatigue

crack and therefore cannot propagate the crack, while a stress range with a maximum tensile stress close

to the ultimate strength of the material will propagate a crack more than a similar stress range with a lower

maximum stress. The mean stress level σm = 1
2 (σ1 +σ2) describes the stress level of a stress range and

is commonly used in a stress correction method to convert a stress range into an equivalent stress range
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with zero mean value [72]. The equivalent stress range with zero mean value by the Smith-Watson-Topper

stress-correction is given as :

∆σt =
√

∆σ2 +2∆σ ∆σm. (23)

The total damage D caused by the stress load with varying amplitude is finally estimated by an accumulation

rule. Again, there are several theories of damage accumulation [73, 74, 75], but one that is commonly used

and works quite well is the linear damage-accumulation rule proposed by Palmgren [76] and Miner [77]:

D =
k

∑
i=1

ni

N(∆σt,i)
, (24)

where D is the cumulative damage, ni is the number of cycles at stress level i, N(∆σt,i) is the total number

of cycles-to-failure at the stress range ∆σt,i and k is the total number of different stress levels.

When the frequency range of the time-varying loads on a structure is lower than the structure’s natural

frequency, these loads are considered quasi-static. In quasi-static condition, the stress in the material is

directly proportional to the external load. However, when the frequency range of the applied load broadens

and overlaps with the structure’s natural frequencies [78], the resulting stress is influenced by both the

external load and the structure’s dynamic response. In this type of damage accumulation, known as vibration

fatigue [18], the direct proportionality between the external excitation and the stress load in the fatigue zone

no longer applies.

Unlike fatigue under quasi-static loading with constant or variable amplitude – where the stress-time history

is a known input for cycle-counting algorithms [70] and is thus considered deterministic – the stress loads

causing vibration fatigue can be either deterministic or random, depending on the type of dynamic excitation.

When the excitation is deterministic, such as with sinusoidal dwell or sweep, the resulting stress load is also

deterministic [79]. However, in real-world scenarios, dynamic excitation is typically random [80], making

the associated stress loads random as well, best characterized by statistical estimators, which are briefly

summarized next [36]. Assuming the excitation at the j-th degree-of-freedom of the dynamic system is

represented by a random variable x j(t) (force, displacement, velocity or acceleration), and given that its

PSD Gxx, j(ω) is known (2), the response σk at the k-th stress degree of freedom can also be expressed as a

PSD [18]:

Gσσ ,k(ω) = |Hσx, jk(ω)|2 Gxx, j(ω), (25)

where Hσ x, jk(ω) represents the FRF of the dynamic structure from the excitation signal x j at the j-th degree

of freedom to the response signal σk at the k-th stress degree of freedom (similar would apply for strain-

based fatigue life estimation). A general definition of the dynamic structure’s FRF for viscous damping is
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provided by the summation term (6). Alternatively, for hysteretic damping, a specific form of the stress

frequency response function is expressed as:

Hσ x, jk(ω) =
Nm

∑
r=1

σ Ar, jk

ω2
r −ω2 + jηr ω2

r
, (26)

and describes the effect of the structure’s modal properties on its stress response.

By applying the linear damage-accumulation rule [76, 77] in combination with log-log linear Basquin equa-

tion (22), the damage intensity is:

d = νp C−1
∫

∞

0
σ

b pa(σ)dσ , (27)

where νp and pa(σ) represent the expected frequency of peaks and the probability density function of

the load-cycle amplitude, respectively. Since the stress load is characterized by its power spectral density

Gσσ (ω), converting it to the time domain to obtain νp and pa(σ) would be inefficient. Consequently, various

spectral cycle-counting methods have been developed; for a comprehensive review and comparison of over

20 such methods see [75]. The primary advantage of spectral methods lies in their efficiency and ease of

implementation within the dynamic stress-response of structures. However, most of these methods do not

directly account for the mean values of individual stress cycles.

Contemporary challenges in vibration-fatigue research originate from the increasing complexity of real-

world loading conditions, particularly due to non-stationary and multiaxial loads. Non-stationarity of dy-

namic loading is addressed by Zorman et al. [81] using a short-time approach, while Trapp and Wolfsteiner

[82] adopt non-statonarity matrix to decompose non-stationary processes into quasi-stationary Gaussian seg-

ments. Alternatively, Zhang et al. [83] apply a deep neural network to handle non-stationary loading. For

recreating the non-stationary and non-Gaussian vibration load in a laboratory environment, Ren et al. present

a novel control methodology in [84]. Addressing the multi-modal response of the dynamic structure, Sui and

Zhang [85] proposed a fatigue response spectrum method, and later enhanced it in [86] by combining single

moment and Projection-by-Projection approaches. For applying the fatigue spectrum to multiaxial loads,

Aimé et al. [87] established the fatigue-damage multi-spectrum method of load-signal evaluation. Addition-

ally, Pei et al. [88] investigated non-proportional multiaxial loading, and Proner et al. [89] experimentally

demonstrated the significance of multiaxiality in vibration fatigue.

A further level of vibration-fatigue complexity arises from multiphase interactions, particularly in cases

involving fluid-structure interactions [90] or mixed-phase materials [91]. Studies have explored vibration

fatigue of structures such as acoustic black holes [92], ultrasonic-assisted laser-shock peened specimens [93]

and directionally solidified superalloys [94]. The structural properties of polymer and composite materials
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present further challenges. Researchers have examined the effects of 2.5D composite weaving [95] and

functionally-graded coating [96] on the vibration fatigue life of specimens, as well as the vibration fatigue

life of carbon-fiber reinforced composites [97] and 3D-printed Polylactic Acid (PLA) structures [98, 99].

5.1. fatpack

fatpack is an open source project for fatigue analysis in the time domain in Python. It is developed on

Github (https://github.com/gunnstein/fatpack) and uses the Internet Systems Consortium (ISC)

license. The package includes modules for cycle counting, stress correction, accelerated fatigue testing and

fatigue endurance. An overview of the functions in fatpack can be found in Tab. 1.

Table 1: Overview of modules and functionality in fatpack

Module Description

rainflow Cycle counting by the 4-point rainflow cycle counting algorithm. Different levels of
granularity are possible in cycle counting, from the definition of load levels, to the sep-
aration of cycles and residuals, to the complete extraction of ranges and corresponding
averages by a single function. This granularity also allows the user to determine how
residuals are treated, e.g. by counting them as full or half cycles, or to create case-
specific objects such as to-from or range-mean cycle counting matrices.

endurance Fatigue endurance curves can be generated for different subdivisions of the range (lin-
ear, bilinear or trilinear curves) with the Basquin relation. Damage accumulation with
Miner’s sum is also implemented in this module.

stresscorrection Various methods for correcting mean and compressive stresses are implemented in this
module.

racetrack Implementation of the nonlinear race track amplitude filter, which removes low-
amplitude cycles from a signal without changing the order of the remaining cycles.
Often used to accelerate fatigue tests with varying amplitude and to obtain sequence
effects.

The following code snippet shows the entire process of calculating fatigue damage according to the stress-

life approach and the core functionality of all modules in fatpack with the exception of the racetrack

module.

import numpy as np

import fatpack

# Assume that `y` is the data series , we generate one here

y = np.random.normal(0., 30., size=10000) * 10 + 15

# Extract the stress ranges and corresponding means by rainflow counting

S, Sm = fatpack.find_rainflow_ranges(y, return_means=True)

# Remove purely compressive stress ranges from cycle count
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Smax = Sm + S / 2.

mask = (Smax > 0.)

S, Sm = S[mask], Sm[mask]

# Apply mean stress correction by Smith -Watson -Topper and find the

# equivalent stress range at zero mean.

St = fatpack.find_swt_equivalent_stress(S, Sm)

# Determine the fatigue damage , using a trilinear fatigue curve

# with detail category Sc , Miner 's linear damage summation rule.

Sc = 90.0

curve = fatpack.TriLinearEnduranceCurve(Sc)

fatigue_damage = curve.find_miner_sum(St)

Note that the docstring of most functions and classes contains a section with examples. The main repository

also contains detailed examples in notebooks.

5.2. FLife

FLife is an open-source Python package for fatigue-life estimation in the frequency domain and is de-

veloped on Github (https://github.com/ladisk/FLife) with a MIT license. The development of the

FLife package began with the need to standardize and simplify the calculation of vibration fatigue and to

create an accurate and transparent benchmark tool for existing and future spectral methods. Because the

FLife code has been thoroughly tested for accuracy, it provides the analyst with a reliable and accurate

estimate of fatigue-life. The package supports more than 20 different spectral methods, see Fig. 9. The

theoretical background and comparison of the methods was done in a review article [75].

The 20+ spectral methods are divided into 4 subgroups (Fig 9):

• Narrowband correction factor: methods are based on narrowband approximation and account for

broadband process with correction factor,

• Rainflow Counting (RFC) Probability Density Function (PDF) approximation: methods are based on

approximation of the probability density function of Rainflow counting,

• Combined fatigue damage (cycle damage combination): methods are based on splitting of PSD of

broadband process into N narrowband approximations and accounting the formation of distinct cate-

gories of cycles,

• Combined fatigue damage (narrowband damage combination): methods are based on splitting the

PSD of broadband process into N narrowband approximations and summing narrowband damages by

a suitable damage combination rule.
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The FLife package is based on the stress-load PSD Gσσ (ω) (Eq. (25)) in the fatigue zone. With known

material fatigue parameters, FLife provides the estimation of the structure’s fatigue life. Stress PSD can be

created either in the form of a Numpy array for closed-form analysis or via a simple and intuitive graphical

user interface. Alternatively, FLife can also process vibration-induced stress-loads in the form of time

series, relying on the FatPack or rainflow package.

Figure 9: Structure of methods supported by FLife.

The main functionality of FLife is provided by the object FLife.SpectralData, which contains data

required for fatigue-life estimation: spectral moments of PSD, spectral band estimators and other parameters.

SpectralData is instantiated with input parameters:

• input = ’GUI’ - PSD is provided by user via GUI (graphically and tabulary), see Fig. 10,

• input = (PSD, freq) - tuple of PSD and frequency vectors is provided,

• input = (x, dt) - tuple of time history and sampling period is provided.

The following code listing shows a short example of using FLife to determine the expected vibration fatigue

life with three different counting methods. More detailed examples can be found in the FLife source code

repository [100].

import FLife , numpy as np

C = 1.8e+22 # S-N curve intercept [MPa **k]

k = 7.3 # S-N curve inverse slope [/]
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Figure 10: PSD definition using GUI.

freq = np.array ((100 , 500 , 1200 , 1500))

PSD = np.array ((0.1, 0.8, 0.8, 0.1,))

# Instantiation of SpectralData object

sd = FLife.SpectralData(input=(PSD , freq))

# Instantiation of counting -method object -spectral and rainflow -

# on sd object

dirlik = FLife.Dirlik(sd)

tb = FLife.TovoBenasciutti(sd)

rf = FLife.Rainflow(sd , T=1, fs=1e5)

# Obtaining the estimated vibration fatigue -life

print(f' Dirlik: {dirlik.get_life(C = C, k=k):4.0f} s')
print(f'Tovo Benasciutti 2: {tb.get_life(C = C, k=k,

method =" method 3"):4.0f} s')
print(f' Rainflow: {rf.get_life(C = C, k=k):4.0f} s')

5.3. py-fatigue

py-fatigue is an open source Python package developed on Github (https://github.com/OWI-Lab/

py_fatigue) under a GNU GPLv3 license. py-fatigue is used for deterministic stress-life fatigue analy-

sis [101]. The tool is particularly useful for analyzing long-term strain signals collected by Structural Health

Monitoring (SHM) systems. py-fatigue seamlessly processes time series observations into cycle-count

matrices and stores them in an efficient JavaScript object notation (JSON) data structure that exploits their

typical sparsity. By processing and storing the data in 10-minute intervals, the results of even multi-year

measurements can be quickly combined without having to process the entire time series [102, 103]. Both

time-series processing and fatigue analysis take advantage of the just-in-time compiler of the numba package

to achieve better performance.
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New instances of CycleCount can be created either with method from_timeseries() (array-like time

series of samples) or with method from_rainflow() (JSON object in py-fatigue-friendly data structure).

CycleCount.from_timeseries() applies the three-point rainflow counting algorithm [104] to the time

series passed as input. The method accepts bin widths and lower-bound attributes for binning of stress range

and mean stresses. The larger the bin widths, the coarser the degree of approximation of the cycle count

matrix obtained to the original cycle count.

import py_fatigue as pf

import py_fatigue.testing as pft

# Generate syntetic time -series

t = pft.get_sampled_time(duration=10000 , fs=10)

s = pft.get_random_data(t=t, min_=-30, range_=180 ,

random_type="weibull", a=2., seed=42)

# CycleCount definition from time -series

cycle_count = pf.CycleCount.from_timeseries(data=s, time=t,

mean_bin_width=3.,

range_bin_width=3.)

The cycle_count can be stored as a JSON cycle-count matrix using the as_dict() method. This method

preserves the accuracy of the most damaging events in the time series via two user-defined attributes:

max_consecutive_zeros to store a cycle as it is when the previous n samples were empty, and damage_tolerance_for_binning

to store a cycle as it is when the relative difference of Palmgren-Miner damages over a hypothetical SN curve

with single slope equal to damage_exponent is more than damage_tolerance_for_binning.

cc_matrix = cycle_count.as_dict(max_consecutive_zeros=8,

damage_tolerance_for_binning=0.1,

damage_exponent=4)

Finally, as_dict() also stores the time series of half cycles (or remaining cycles), which represent fatigue

cycles whose period is longer than the original duration of the time series. This is advantageous for obtaining

low-frequency cycles [105] if several time series are to be concatenated.

In the offshore-wind industry, for example, the time series of SHM data is typically stored every 10 minutes

(600s), but some highly-damaging fatigue cycles can have frequencies much lower than 1/600s ∼ 0.0017 Hz,

and can be related to several naturally slow factors such as tidal cycles, wind gusts or even seasonal changes.

When merging these 10-minute cycle_count objects, Low-Frequency (LF) cycles remain uncounted as

residuals [105]. In py-fatigue, these residuals can be resolved to include uncounted LF cycles in the

concatenated cycle_count object. This approach eliminates the need to apply rainflow counting to the

entire stress signal, improving efficiency.

35



For this reason, cc_matrix can be imported back into CycleCount using the from_rainflow() method,

and multiple CycleCount instances can be combined into a cluster using the sum() method to perform

long-term fatigue calculations.

# Suppose we have a list of cycle -count matrices

cc_matrices = [cc_matrix_1 , ..., cc_matrix_n]

# Cluster them together

cycle_count_list = [CycleCount.from_rainflow(m) for m in cc_matrices]

cycle_count_sum = sum(cycle_count_list)

# Retrieve the effect of low frequency fatigue

cycle_count_sum_lf = cycle_count_sum.resolve_residuals ()

Cumulative number of full stress cycles obtained by concatenating CycleCount instances of 10-minute

intervals for a bending-moment signal (see Fig. 11a)) are shown as full cycles without resolved residuals

in Figure 11b). Full cycles with resolved residuals (see Fig. 11b)) show that high-damaging fatigue cycles

with low frequencies are recovered by resolving the residuals of concatenated cycle_count objects. This

illustration shows the effect of residual cycles on a 6-hour signal but this can readily be extended to several

years [105].

Figure 11: Wind turbine loading, a) 6-hour bending moment signal, taken from a wind turbine, with 10-minute intervals marked as red
lines, b) the effect of recovered low frequency cycles.

Figure 11b) can be easily generated using built-in plot functions for CycleCount histograms.

# Generate histograms

fig , ax = plt.subplots ()

ax.set_xscale('log')

cycle_count_sum.plot_histogram(fig = fig , plot_type='counts -range -cumsum ', ls="",

marker="x", label = 'Full cycles without resolved residuals ')
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cycle_count_sum_lf.plot_histogram(fig = fig , plot_type='counts -range -cumsum ', ls="",

marker=".", label = 'Full cycles with resolved residuals ')

ax.legend ()

Finally, stress values are usually measured at accessible locations and therefore require scaling with Stress

Concentration Factor (SCF) to obtain the stress history at a specific location of the structure. Multiplying

a cycle_count instance by a scalar is equivalent to applying an SCF to the cycle-count matrix stored in

cycle_count.stress_concentration_factor.

Stress ranges can be corrected for the effects of mean stress using the method cycle_count.mean_stress_correction

, which implements the correction models DNVGL [106], Goodman, Walker and Smith-Watson-Topper [107,

108].

Once the data preparation is completed, the fatigue analysis can be performed with the modules damage

.stress_life or damage.crack_growth. Both methods require stress ranges and material properties

that can be defined using the modules material.sn_curve and material.crack_growth_curve. In

addition, the crack-growth analysis requires a crack geometry, which is defined with the module geometry

(see [109] for more details).

For the stress-life analysis, the linear damage-accumulation rule Palmgren-Miner [77] is available, which en-

ables the calculation of damage-equivalent stress ranges and bending moments. Non-linear damage models

such as the Pavlou, Manson-Halford, Si-Jian and Leve methods [110] are also supported. For crack-growth

analysis, the Paris law [111] is implemented, which allows estimations of cycles to failure for different crack

geometries, including cracks in an infinite plate and both external and internal surface cracks in a cylinder.

Users can manually define other geometries by specifying the crack growth rates as functions of the stress

intensity factor.

6. Rotordynamics

Rotordynamic analysis has its origins in the 19th century with Rankine, de Laval and Föppl, followed by

Stodola, Jeffcott and others [112]. The theory developed considerably in the 20th century with the intro-

duction of calculation methods and modern computers [113, 114, 115, 116]. Vibration analysis of rotating

machinery is still very important in the 21st century. For devices such as motors [117], pumps [118], turbines

[119] and compressors [120], the amplitude of the vibrations must be limited, otherwise various errors may

occur [121]. Dynamic analysis is useful both in the machine-design phase and in monitoring, diagnosis and

prognosis [122]. Understanding and modeling the behavior of equipment under different operating condi-
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tions is crucial for optimizing performance, preventing failures and ensuring reliability and efficiency. In this

context, the development of computer models that enable the simulation of these mechanical systems and

support both research and decision-making is essential. Nowadays, computer models for rotating machines

are combined with machine-learning tools and improve their evaluation capacity [123, 124].

Various tools are available for rotordynamic analysis, from commercial software (such as Ansys Mechanical

and COMSOL Multiphysics) to independent tools (e.g. ROTORINSA; XLTRC software). However, many

of these options often require the purchase of licenses and may limit users to a graphical interface, making

it difficult to perform complex and automated analysis. In addition, the lack of open and collaborative

development is a significant drawback of these tools, preventing the user community from contributing

improvements and new features, limiting the potential for innovation and scientific progress.

This section introduces Rotordynamic Open Source Software (ROSS) [125], an open-source library written

in Python for the dynamic analysis of rotors. ROSS represents a significant effort to provide an accessible

and flexible tool for the engineering community. Its code is hosted entirely in a remote GitHub repository,

and the community is encouraged to actively participate in its development. This collaborative approach

not only promotes transparency and accessibility of the software, but also enables continuous development

driven by user contributions and feedback.

6.1. Rotordynamic model

In modeling, the rotor shaft (e.g. Timoshenko beam theory) is discretized using the finite element method,

resulting in a system of second-order ordinary differential equations in which axial, lateral and torsional

degrees of freedom are taken into account. Typically, the system is linearized around an equilibrium con-

figuration with linear bearing and seal coefficients, and the disks are modeled as rigid bodies. One of the

most important properties of rotor systems is that their modal parameters depend on the nominal speed of

the rotor Ω. The governing equations have the form:

Mẍ(t)+(C+ΩG)ẋ(t)+Kx(t) = f(t) , (28)

where x(t) ∈ Rn represent the generalized displacements and f(t) ∈ Rn the generalized forces (e.g. unbal-

ance, misalignment). The mass, damping, gyroscopic and stiffness matrices of the system are M, C, G and

K, with dimension n×n. In the frequency domain, the equations become:

(−Ω
2M+ jΩ(C+ΩG)+K)x̂(Ω) = f̂(Ω) , (29)

where j =
√
−1. There are numerous analyzes that can be performed in ROSS, e.g. time and frequency re-

sponses, Campbell diagrams, complex modal analysis, and stochastic dynamics (with uncertain parameters).
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Based on GitHub data, we have observed changes in engagement with ROSS’s repository and documentation

over the past few years. In 2020, the repository averaged 4.4 daily visitors, which increased to 12.6 in 2024.

The documentation access also grew, rising from an average of 1.0 daily visitors in 2020 to 16.8 in 2023.

The documentation has been accessed by users from various countries. Access statistics show the following

country-wise breakdown of visitors for the last 12 months: Brazil (996), USA (778), China (522), Germany

(444), India (287), France (239), Japan (193).

In [120], the first version of ROSS (not yet called ROSS) was used to analyze the effects of uncertainties in

damping coefficients on rotor behavior. ROSS was applied to enhance a rotordynamic finite- element model

using neural networks in [126]. Different reduced-order models were evaluated to speed up computations

considering a stochastic model in [127]. Gyroscopic disk metastructures were proposed for broadband rotor

vibration attenuation in [128]. Other examples of the application of ROSS in scientific investigations include:

evaluating hydrodynamic bearing models [129], combining convolutional network for fault diagnosis [130],

and data-driven Dirichlet sampling on manifolds to augment training sampling [124].

Rotating machine dynamic analysis is still an important field of research. Recently, a variety of investigations

have been published in refereed journals. For instance, related to misalignment and nonlinear contact [131],

rub-impact [132], absorbers [133], flywheels [134], couplings [135], active bearings [136], stability analysis

[137], and uncertainty analysis [138].

6.2. ROSS

The source code of ROSS (Rotordynamic open-source Software) [125] is available on GitHub (https:

//github.com/petrobras/ross). It is released under the Apache 2.0 license. To use this package, you

need to insert the base components, such as shaft elements, bearing elements and disks, in a list-like format.

If the shaft elements are not numbered, the class defines a number for each element, corresponding to the

position of the element in the list provided to the rotor constructor. ROSS is organized in different classes

(shaft, disk, bearing, etc.) that are assembled to create a rotor (or multi-rotor). Then, different analyzes

(methods) can be run and results post-processed as shown in Fig. 12. An example on how to build a model

in ROSS is given in Fig. 13(a).

Modeling complex machines, such as a centrifugal compressor, is also possible using ROSS, see Fig. 13(b).

The shaft elements are shown in gray, the disks are red and the bearings are shown as springs and dampers.

After formulating the model, it is possible to plot the rotor geometry, run simulations and get results in the

form of graphs. ROSS can perform different analyses, such as static analysis, critical speed map, mode
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Figure 12: ROSS is organized in different classes (shaft, disk, bearing, etc.) that are assembled to create a rotor (or multi-rotor). Then,
different analyzes (methods) can be run and results post-processed.

(a) (b)

Figure 13: Example of a simple rotor model (a) and of a centrifugal compressor (b) modeled with ROSS.

shape, frequency response, and time response. The user can run the function campbell.plot(harmonics

=[0.5, 1]), to determine the Campbell diagram presented in Fig. 14, generated for the compressor given

by Fig. 13(b), the backward and forward critical speeds can be observed in the obtained Campbell diagram.
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Figure 14: Campbell Diagram.

With this library, it is possible to simulate not only the rotor, but also the measurement configuration with the

help of probe variables. These variables are a list of tuples with the node, the location where the reaction is to

be observed and information about the orientation. Fig. 15 shows the Bode and Nyquist diagram, generated

by the following code:

# Unbalance 1

n1 = 29 # node

m1 = 0.003 # magnitude

p1 = 0 # phase

# Unbalance 2

n2 = 33 # node

m2 = 0.002 # magnitude

p2 = 0 # phase

frequency_range = np.linspace(315 , 1150 , 101)

results2 = rotor3.run_unbalance_response(

[n1 , n2], [m1, m2], [p1, p2], frequency_range)

probe1 = (15, 45) # node 15 , orientation 45 degree

probe2 = (35, 45) # node 35 , orientation 45 degree

results2.run_unbalance_response.plot(probe=[probe1 , probe2], robe_units="degrees")
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Figure 15: Unbalance analysis results with Bode and Nyquist diagram.

This library can also be used to evaluate the effects of seals on the dynamic behavior of rotors and allows the

extraction of the coefficients (mass, stiffness and damping) with uncertainties [120]. In addition, ROSS has

made significant progress recently. While it used to support both 4-Degree-Of-Freedom (DOF) and 6-DOF

models, the tool is now moving to using only the 6-DOF model. New features have also been implemented,

including a generic coupling element and a new class that enables the modeling of gear systems (see Fig. 16).

The generic coupling element facilitates the simulation of different types of connections between rotors. The

detailed modeling of gear systems enables the evaluation of the effect of the gear on the torsional responses

of multiple rotor systems. These additions increase the ability of ROSS to perform detailed and robust

analysis. The 6-DOF model, now equipped with these features, provides users with a more efficient and

accurate tool for simulating complex mechanical systems, ensuring better predictions of system performance

and reliability. The addition of a new class in ROSS dedicated to the simulation of seals (e.g. labyrinth seals,

honeycomb seals and hole pattern seals) is also planned.
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Figure 16: Modeling of gear systems.

As it is an open-source library coded in the Python language, it facilitates the integration of codes with

other programs without depending on commercial software. In addition, the ROSS package has detailed

documentation and a series of examples in Jupyter Notebooks with instructions for use.

The ROSS package enables numerical analysis of rotating machinery under various operating conditions

involving components such as shafts, bearings and seals. This capability enables the simulation of criti-

cal rotor-dynamics issues, including development and industrial applications, and supports fault diagnosis.

Future work on the ROSS library will focus on the integration of learning algorithms for digital twin tech-

nologies and fault-detection applications.

The section is concluded with a code that shows how to construct and plot a rotor using ROSS (many other

examples can be found on https://github.com/petrobras/ross):

# Rotor example

# Importing ross and numpy

#(ross must be installed '!pip install ross - rotordynamics ')
import ross as rs

import numpy as np

# Beginning shaft , disks , and bearings

shaft_elements = []

disk_elements = []
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bearing_seal_elements = []

# Choosing the material

steel = rs.Material.load_material("Steel")

# Creating the shaft with 6 finite elements

for i in range(6):

shaft_elements.append(rs.ShaftElement(

L=0.25, material=steel , n=i, idl=0, odl=0.05))

# Creating two discs

disk_elements.append(rs.DiskElement.from_geometry(

n=2, material=steel , width=0.07, i_d=0.05 , o_d=0.28))

disk_elements.append(rs.DiskElement.from_geometry(

n=4, material=steel , width=0.07 , i_d=0.05, o_d=0.35))

# Creating two bearings

bearing_seal_elements.append(rs.BearingElement(

n=0, kxx=1e6 , kyy=1e6 , cxx=0, cyy=0))

bearing_seal_elements.append(rs.BearingElement(

n=6, kxx=1e6 , kyy=1e6 , cxx=0, cyy=0))

# Creating the rotor with all the components (shaft , disks , and bearings)

rotor1 = rs.Rotor(shaft_elements=shaft_elements ,

bearing_elements=bearing_seal_elements ,

disk_elements=disk_elements ,)

# Plotting rotor

rotor1.plot_rotor ()

7. Substructuring and Transfer Path Analysis

Dynamic Substructuring (DS) and Transfer Path Analysis (TPA) are engineering concepts where dynamic

aspects of complete products are characterized on the basis of individually-examined components or sub-

structures. This approach can reduce the complexity of the overall problem and provide insight into how

to optimize or troubleshoot the individual component. One of the ways to model the substructures is to

use FRFs, where substructures can be fully modeled by an experimental approach [139]. The approach

known as Frequency-Based Substructuring (FBS) also enables the construction of hybrid models in which

experimentally-characterized and numerically-modeled (not yet produced) parts can be combined. TPA is

a reliable and effective tool for determining the critical paths for the transmission of sound and vibration

from the actively vibrating components of a product to the connected passive substructures. In cases where

vibrating mechanisms are too complex to model or measure directly, TPA characterises a source with a

set of forces that mimic the operational responses [140]. The combination of DS and TPA facilitates Vir-

tual Acoustic Prototyping (VAP) and enables the simulation of acoustic responses in yet-to-be-developed

products, allowing design and performance to be optimized early in the development process [141, 142]. In
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addition, response models of the interconnecting joints can also be isolated and later parameterized with FBS

[143]. In [144], an FBS framework was proposed to develop a machine-learning-based approach to estimate

the mass and stiffness parameters of the joints. Similarly, in [145], FBS is used to generate the training-set

samples in the form of hybrid models of the structure of interest for machine-learning-based joint health

monitoring. In the context of experimental FBS, the main challenge for a successful substructure-coupling

implementation remains the modelling of the common interface between the substructures. Significant ef-

fort has been performed by the researchers to find a suitable and reliable interface model by means of

Virtual Point Transformation (VPT) [146], extended to flexible interfaces in [147, 148], or Singular Vector

Transformation (SVT) [149]. In [150, 151], authors provide a practical and reliable methodology for the

quantification and propagation of the random measurement uncertainty propagation in FBS.

Lagrange Multiplier Frequency-based Substructuring. The Lagrange Multiplier - Frequency Based Sub-

structuring (LM-FBS) determines the admittance of the assembled system from the admittances of the in-

dividual subsystems with a set of interface forces as unknown variables. A short recap of the LM-FBS is

summarized in the following according to [139]. Consider two substructures A and B connected at the in-

terface DOFs (⋆)A
2 and (⋆)B

2 as depicted in Fig. 17. With admittances of the individual subsystems (YA and

YB) partitioned in internal ((⋆)A
1 and (⋆)B

3 ) and interface DOFs, the governing equation of motion for the

uncoupled system can be written as1:

A

B

2 2
Ag Bg

1
Au

2
Au

2
Bu

3
Bu

Figure 17: Substructures A and B to be coupled at the common interface.

u = YA|B (f+g) ,

u =


uA

1

uA
2

uB
2

uB
3

 , YA|B =


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11 YA
12 0 0
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21 YA

22 0 0

0 0 YB
22 YB

23

0 0 YB
32 YB

33

 , f =


fA
1

fA
2

fB
2

fB
3

 , g =


0

gA
2

gB
2

0

 .
(30)

1An explicit dependence on frequency is omitted for readability.
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The vector u represents the displacements to the external force vector f, and g is the vector of interface forces

that hold the substructures together and therefore only appear at interface DOFs.

The compatibility of the displacements at the common boundary is reformulated in the general formulation:

Bu = 0 where B = [0 − I I 0] . (31)

The equilibrium condition is enforced by replacing the interface forces with a set of unknown Lagrange

multiplier vectors λ:

g =−BTλ. (32)

By eliminating λ from the set of Eqs. (30 - 32) one obtains:

u =

[
I−YA|B BT

(
BYA|B BT

)−1
B
]

YA|B︸ ︷︷ ︸
YAB

f, (33)

where YAB is the admittance of the assembled system.

In- situ Tranfer Path Analysis. Consider an assembly of substructures A and B. Substructure A is an active

component with the operational excitation f1. In contrast, no excitation is active on the passive substructure

B. The responses on B are therefore a consequence of f1 and are observed near the interface at the indicator

DOFs (u4).

Source excitations f1 are often not measurable in practice; therefore, in-situ TPA takes a different approach

to describe the operational excitations. A set of equivalent forces feq
2 is introduced, which act on the DOFs

of the interface. When the source is deactivated, feq
2 yields the same responses on the passive side as f1. The

simultaneous application of the operational forces f1 and the equivalent forces feq
2 , which act in the opposite

direction, should therefore eliminate any response on the passive side:

0 = YAB
41 f1︸ ︷︷ ︸
u4

+YAB
42

(
− feq

2

)
. (34)

Expressing the equivalent forces feq
2 yields:

feq
2 =

(
YAB

42
)+u4. (35)

7.1. pyFBS

An open-source Python package pyFBS [152] aims to make the advanced methods of FBS and TPA more

accessible to the engineering community. The source code of pyFBS is available on GitLab (https://
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gitlab.com/pyFBS/pyFBS) and published under MIT license. With pyFBS, users can perform all aspects

of FBS and TPA, starting with virtual design of experiments. The package enables 3D visualization of

measurement setups and supports interactive positioning of inputs and outputs:

import pyFBS

view3D = pyFBS.view3D ()

Within the 3D display, the user can add geometric objects either with the PyVista Python package [153] or

with .stl objects. 3D objects representing inputs (impacts or shaker inputs) and outputs (channel responses)

can be displayed together with the corresponding labels (see Fig. 18):

view3D.add_stl(path_to_stl)

view3D.show_imp(dataframe_impact)

view3D.label_imp(dataframe_impact)

Figure 18: 3D viewer.

The measurement setup can be documented by accessing the pose of the input/output objects. The pyFBS

package enables user-friendly FRF synthesis based on the mass and stiffness matrices imported from the

Finite Element Method (FEM) software. Currently, only data import from Ansys is supported [154]:

MK = pyFBS.MK_model(rst_file , full_file)

Imported mode shapes can be animated in combination with the 3D display. FRFs can be synthesized using

either the full harmonic method or the mode-superposition method for predefined input/output DOFs:

MK.FRF_synth(dataframe_channel , dataframe_impact)

Using synthesized or measured FRFs, state-of-the-art techniques for successful coupling or decoupling of

substructures can be easily implemented with pyFBS [155]. To model the interface between the substruc-

tures, the virtual-point transformation [146, 156] and the singular-vector transformation [149] are imple-

mented in a user-friendly way:

vpt = pyFBS.VPT(dataframe_channel , dataframe_impact ,

dataframe_vp_outputs , dataframe_vp_inputs)

vpt.apply_VPT(MK.freq , MK.FRF)

47

https://gitlab.com/pyFBS/pyFBS
https://gitlab.com/pyFBS/pyFBS


Once the collocated FRFs have been obtained for each substructure considered in the coupling, the user must

code manually. First, the admittance for the uncoupled system (YA|B) and the corresponding Boolean matrix

B should be defined. The admittance of the full assembly is then obtained as follows:

Y_AB = Y_A_B - Y_A_B @ B.T @ np.linalg.inv(B @ Y_A_B @ B.T)

@ B @ Y_A_B

The estimation of the equivalent set of forces can be carried out in a similar way. VPT is first applied so that

the equivalent forces at the virtual interface DOFs can be estimated:

Y_42 = Y_4f @ vpt.Tf

Finally, the inverse problem for estimating the equivalent amount of force should be manually coded as:

f_2_eq = np.linalg.pinv(Y_42) @ u4

The package also offers the possibility to use DS-based expansion methods to obtain consistent response

models of the substructures, i.e. mixing of two equivalent models of the same substructure into their hybrid

model. One of the models provides the dynamic properties (overlay model, usually experimental) and the

second model provides a dense set of DOFs (parent model, usually numerical). In pyFBS, the System

Equivalent Model Mixing (SEMM) [157, 158] and Modal System Equivalent Model Mixing (M-SEMM)

[159] are implemented in a user-friendly way that adopts the input/output dataframe notation:

Y_AB_SEMM = pyFBS.SEMM(MK.FRF , Y_exp ,

df_chn_num = dataframe_channel_parent ,

df_imp_num = dataframe_impact_parent ,

df_chn_exp = dataframe_channel_overlay ,

df_imp_exp = dataframe_impactt_overlay ,

SEMM_type='extended ')

For better readability of the article, only the most basic functions of pyFBS are presented in the form of

Python code. For additional information on the full capabilities of the package, the interested reader is re-

ferred to https://pyfbs.readthedocs.io/en/latest/examples/examples.html, where all meth-

ods implemented in pyFBS are also theoretically elaborated as well as showcased on real datasets. As

decided by the authors of the package, certain aspects of the coding are intentionally left to the user to

implement manually in order to improve the user’s understanding of the underlying methods. For users un-

familiar with the subject, the full procedure is always accessible and explained on the package’s website in

the corresponding examples.
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8. Machine Learning in Structural Dynamics

Modeling the dynamic behavior of structures is often a major challenge. Traditional approaches, which

have been followed for many years, have provided engineers with great predictive power to design safe and

durable structures. In recent years, however, the need for more complex materials and more complex struc-

tures has emerged. This need stems from several newly-imposed constraints on the design of structures.

Arguably one of the most important of these constraints is the reduction of waste and the sustainability

of materials and overall structures. The reduction in material volume and the introduction of sustainable

but complex materials (which is possible due to recent advances in material manufacturing), leads to non-

linearities and complex structural behavior. As a result, traditional physics-based approaches to modeling

structures may be insufficient to achieve the desired prediction accuracy.

As in many other fields, this problem is often tackled in structural dynamics using data-driven approaches

and machine learning in particular [160]. By following the data-driven path to modeling, one can skip the

mathematical formulation of the physics of a particular problem. Such an approach can be very practical

when modeling structural quantities whose relationship may be complicated enough to formalize an accu-

rate model. The same principle applies in cases where the mathematical formulation is difficult or in case

of inherent uncertainties in the modeled structure. In all these cases, machine learning is a powerful tool for

modeling that establishes a direct link between the observations of a phenomenon and a model to approx-

imate the true underlying relationship of the phenomenon. An important factor that has contributed to the

development of machine-learning approaches to structural dynamics is the explosion of methods developed

solely from a machine-learning perspective. Such methods, especially deep-learning algorithms [161], aim

to contribute to the field of artificial intelligence, which the authors argue is a superset of machine learning.

Nonetheless, powerful algorithms have been developed in recent years that have applications in structural

dynamics, as explained later in this article.

The various structural dynamic problems that machine-learning tools deal with can be categorized according

to the three main learning problems described in [162]. The first is classification, i.e. learning how to group

vectors into two or more classes. The second is regression, i.e. learning the mapping of vectors from an input

space X to an output space Y . The third problem is that of density estimation, which involves approximating

the underlying (probability) density function of some data. This task is sometimes referred to as generative

modeling, as the density functions can be used to generate samples or realizations.

In recent years, a large number of open-source code packages for machine learning have been developed.

The Python modules tend to be the most widely used, providing researchers with powerful modeling and
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inference capabilities. Structural dynamics is, of course, a discipline where researchers have extensively used

machine learning packages to develop modeling algorithms. However, there are no widely used machine

learning packages specifically targeted at structural dynamics. For more general dynamic modeling, open-

source modules have been developed and are available. Such modules are Deeptime [163], which can be

used for dimensionality reduction of data and Markov state modeling of time series. A submodule of the

aforementioned module is PySINDy [164, 165], which is an implementation of the work presented in [166]

and can be used to find equations in dynamic systems. Another example of a machine-learning module

dedicated to dynamic modeling is that of Physics-Informed Neural Networks (PINNs) [167], which allows

the combination of data and physical equations to improve the performance of machine-learning models.

Modules such as those mentioned above offer powerful tools for modeling dynamic systems. For structural

dynamics, however, the various problems are often treated as individual problems that require special at-

tention. Examples can be found in the literature where the work or approaches are motivated or supported

by existing packages, such as [168], where an equation-discovery method is presented that is able to deal

with high levels of data sparsity and noise often present in structural-dynamics applications. Similar mod-

ifications of PINNs can be found in [169, 170], where the PINN formulation is adapted to the appropriate

context.

The special attention required for individual applications of structural dynamics and the unavailability of

a field-specific machine-learning module have led researchers to develop methods that utilize widely used

machine-learning packages. A commonly-used package with a wide range of machine-learning tools is

sklearn [171], whose sources are available on GitHub (https://github.com/scikit-learn/scikit-learn)

and which has been released under the BSD 3-clause license. The special package enables the use of

simple machine-learning models that are not case-specific. Although simple machine-learning models are

often sufficient for structural-dynamics applications, the need for more powerful models has recently led

to the adaptation of neural-network models. For the use of neural networks, the two most commonly

used are PyTorch [172] and Tensorflow [173]. The source code of PyTorch is available on GitHub

(https://github.com/pytorch/pytorch) and is published under the BSD 3-clause license. Tensor-

flow’s source is also available on GitHub (https://github.com/tensorflow/tensorflow) and is re-

leased under the Apache-2.0 license. Both packages offer features that have contributed to the recent explo-

sion of research activity in machine learning. One important capability is automatic differentiation [174],

which allows researchers to define the models to fit their applications, combine different model types, and

still compute the necessary derivatives in an automated way to train the models on data. Another class
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of machine-learning methods that has been used extensively in structural dynamics are Gaussian processes

(GPs) [175]. Similar to neural networks, there are packages that allow the definition of GP models, e.g. GPy

[176], GPflow [177, 178], which is built with Tensorflow, and GPyTorch [179], which was created with

PyTorch.

In the absence of a specific Python module for structural dynamics, this section attempts to present how

models from commonly-used Python modules can be used for the purposes of applications of the field.

Machine learning in structural dynamics can be found in various areas such as structure identification, input

identification, SHM, model predictive control, and surrogate modeling. Machine learning serves as a tool to

solve the above problems, which can be categorized into the three types of learning algorithms (regression,

classification and density estimation) and can be handled by a range of machine learning algorithms, from

simpler to more complicated ones.

8.1. Regression

In regression, the first category of learning algorithms, structural identification is the most common problem

encountered in structural dynamics. Structural identification is the process of creating a model that can

model the dynamic behavior of a system in time [180]. Such techniques are also used for equation finding

in system identification [181], input estimation [182, 183], and surrogate modeling [184]. Other current

applications of regression include structural health monitoring tasks such as the localization of damage in

continuous systems [185].

The usual equation of motion for a structural system is as follows:

Mÿ+g(ẏ,y) = F, (36)

where ÿ, ẏ, y are the acceleration, velocity and displacement vectors of the degrees of freedom of the system,

M is the mass matrix, F is the vector of the external forces acting on the system and g is a function that

describes the internal forces as a function of the velocities and displacements of the system. It is clear that

the equation cannot be solved analytically if the function g is not known. The aim of such tasks is to define

a model f that describes the state transition from time t to time t +1. The model can be written as:

yt+1 = f (yt−m:t), (37)

where yt is the vector of displacements at time t, yt−m:t are the vectors of displacements at times t −m,

t −m+ 1..., t − 1 and m is the number of previous steps that the model f takes into account to predict
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the displacements at time t + 1, which is often referred to as delay. One can therefore use a number of

machine-learning methods to define the model f .

The first and probably simplest method is to perform linear regression. To do this, one must first have time

series data {y}0:t available and construct a matrix A given by:

A =


y1

0 y2
0 . . . yN

0 y1
1 . . . yN

m

y1
1 y2

1 . . . yN
1 y2

1 . . . yN
m+1

...
...

. . .
...

...
. . .

...

y1
t−m y2

t−m . . . yN
t−m y2

t−m . . . yN
t−1

 , (38)

where yi
t is the displacement of the ith degree of freedom of the structure and at time t. Similarly, the B

matrix is created as follows:

B =


y1

m+1 y2
m+1 . . . yN

m+1

y1
m+2 y2

m+2 . . . yN
m+2

...
...

. . .
...

y1
t y2

t . . . yN
t

 . (39)

Based on the two matrices, one may use scikit-learn to define a linear model as follows:

from sklearn.linear_model import LinearRegression

lin_model = LinearRegression () # Define the model

lin_model.fit(A, B) # Fit the model to the data

Considering that one wants to make predictions for the time step t +1 of the time series, a new matrix C can

be defined as follows:

C =
[
y1

t−m+1 y2
t−m+1 . . . yN

t−m+1 y1
t . . . yN

t

]
(40)

and using the following code, the model can be used to make the prediction:

preds = lin_model(C)

The specific algorithm is a very simple way to define a one-step-ahead model. By making predictions for

time t +1 and then rolling the matrix C to contain the prediction at time t +1, the model can be used again

to make predictions for time t + 2 and so on. However, the specific model is linear. Linearity limits the

predictive power of the model in several ways. Therefore, a more complex and powerful model can be used.

Conveniently, the matrices A and B do not need to be changed to be used by another model. More specifi-

cally, PyTorch can be used to define a neural network that performs the predictions for one step in advance.

In this case, it is a feedforward neural network and the code to define this network is provided:
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import torch

# n_dof: the number of degrees -of -freedom

# m: the number of lag timesteps; the lag

# n_hidden: the size of the hidden layer

model = torch.nn.Sequential(

torch.nn.Linear(n_dof * m, n_hidden),

torch.nn.ReLU(),

torch.nn.Linear(n_hidden , n_dof))

The code snippet above defines a simple neural network with an input layer, a hidden layer and an output

layer. To train the network, the following code can be used:

# Loss function , mean -squared error in this case

loss_fn = torch.nn.MSELoss ()

# Define the optimisation algorithm

optimiser = torch.otpim.Adam(model.parameters (), lr=0.001)

# Training loop

n_epochs = 20

for epoch in range(n_epochs):

y_pred = model(A)

loss = loss_fn(y_pred , B)

optimizer.zero_grad ()

loss.backward ()

optimizer.step()

In the code snippet above, the loss function is defined and, since it is a regression problem, selected as the

mean-square-loss function. The Adam optimizer [186] with a Learning Rate (LR) of 0.001 is chosen as

the optimization algorithm and the training is performed for 20 epochs. The above code is a very simple

and straightforward definition and training of a neural-network model. Mini-batching and other techniques,

such as validation, are not used, but their addition is relatively simple and depends on the application one

is dealing with. The advantage of PyTorch and Tensorflow is that the definition and training of neural

network models can be easily modified and that users are free to define their own algorithms for each part of

the training procedure.

Exactly the same model defined above can also be used for surrogate modeling. By slightly modifying

the model, it could be used for various regression applications of structural dynamics. One can change the

variables that define the size of the input, hidden and output layers according to the needs of a regression

problem and train the new model on the appropriate data.

8.2. Classification

Classification models are very useful in the field of SHM. Since the early years of research in the field

[187], statistical classifiers have been used to distinguish between different damaged or undamaged states
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of structures, and to this day, classification models are used to solve current damage-detection problems

[188]. Classification algorithms such as those presented in this article have also been used extensively in

damage localization to identify the location of damage, reducing the problem to a classification problem

[189]. In recent years, attention has shifted to transfer learning approaches and the field of Population-Based

Structural Health Monitoring (PBSHM) [190, 191, 192, 193, 194] has been developed with the aim of using

data from extensively-monitored structures to perform inference in the case of data-scarce structures. In

these works, machine learning is extensively used to create classification models that work for different

structures and classify the structures according to their similarity. The basic models used are similar to those

discussed here, but the transfer requires special handling depending on the application.

To start creating and training a machine-learning model, a matrix of damage-sensitive features is needed.

The damage-sensitive features must be correctly selected with technical intuition and experience. Such a

matrix can be defined as:

D = [x1,x2...,xK ], (41)

where xi is the ith vector of damage-sensitive features used for classification. The targets are then defined.

In the case of binary classification, the targets are placed in a vector given by:

T = [y1,y2...,yk]T , (42)

where yi ∈ {0,1} is the ith label. For the case of binary classification, sklearn implementations of classifica-

tion algorithms can be used to distinguish between two classes – most often these classes are the undamaged

and the damaged state of a structure. Examples of models that can be used to classify according to the

damage-sensitive data in D of Eq. (41) are logistic regression and Support Vector Machines (SVM) [195]

and the corresponding implementation with sklearn:

from sklearn.linear_model import LogisticRegression

from sklearn.svm import SVC

# Fit the models to the data D and labels T

log_reg_model = LogisticRegression ()

log_reg_model.fit(D, T)

svm_model = SVC()

svm_model.fit(D, T)

# Predict the states of a structure according to testing data D_test

T_test_log_reg = log_reg_model.predict(D_test)

T_test_svm = svm_model.predict(D_test)
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In the case of multiple classes, the targets are given in a matrix form as:

T = [y1,y2...,yk]T , (43)

where yi is the ith target vector with a one-hot encoding of the class of the ith sample; e.g. for the sample i,

which belongs to the second of three classes, the vector yi would be [0,1,0].

Similar to before, a simple model can be defined with scikit-learn, such as Support Vector Machines,

Gaussian mixture models, k-nearest neighbors, etc. A commonly-used algorithm in the case of multiple

classes is the decision tree. The convenience of the algorithm results from its interpretability. The imple-

mentation with sklearn is similar to the case of binary classification and is given by:

from sklearn.tree import DecisionTreeClassifier

# Define the model and fit it to the data D and the damage -class labels T

dec_tree_model = DecisionTreeClassifier ()

dec_tree_model.fit(D, T)

# Predict the states of a structure according to testing data D_test

T_test = dec_tree_model.predict(D_test)

Although such approaches are efficient, more powerful approaches, such as neural networks can also be

used. In this case, the code to create a multi-class classification model using PyTorch is:

import torch

# n_feature : the number of damage - sensitive features

# n_hidden: the size of the hidden layer

# n_classes : the number of classes

model = torch.nn.Sequential(

torch.nn.Linear(n_feature , n_hidden),

torch.nn.ReLU(),

torch.nn.Linear(n_hidden , n_classes),

torch.nn.Softmax ())

The model is a simple model with input, hidden and output layers. The network is trained in the same way

as before, but a different loss function must be used for classification. In cases of multi-class classification,

the cross-entropy loss is usually used, which is defined as follows:

loss = nn.CrossEntropyLoss ()

8.3. Density estimation

The third problem of learning, as defined in [162], is to define the PDF of some observed data and possibly

define a generative model that can be used to generate data from the underlying distribution. Such models

also provide functionalities that are useful for structural dynamics. Similar to damage classification, density-

estimation models are used to determine the probability of outliers in the detection of damage. In recent
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work, such density-estimation models are combined with active-learning approaches to address the problem

of data scarcity and the high cost of labeling data in the domain [196]. Generative models such as Variational

AutoEncoders (VAE) [197] have been used to assess wind-turbine degradation based on Supervisory Control

and Data Acquisition (SCADA) data [198] as well as part of a reduced-order model [199, 200]. In other

cases, variations of Generative Adversarial Networks (GANs) [201] are used as a nonlinear transformation

for nonlinear modal analysis [202]2. Similarly, normalizing flows were used for the definition of nonlinear

normal modes [203].

This task has long been treated with approaches ranging from the very simple to the more complicated. Sim-

ple approaches include the assumption that the data originate from a particular distribution (e.g. Bernoulli,

Gaussian, log-normal, etc.) and the use of the observed data to empirically calculate the parameters of the

distributions. SciPy [2] provides tools to fit such distributions to available data. Among the more compli-

cated and powerful approaches is Kernel Density Estimation (KDE) [204], which can be used to define the

probability density function of data with multimodal underlying distributions. Again, SciPy provides an

implementation of the algorithm, and given a matrix of features like the one in Eq. (41), the KDE of the data

can be defined as follows:

import numpy as np

import scipy

# D: number of samples X number of features numpy array

# D_t: numpy array with newly observed data

kernel = scipy.stats.gaussian_kde(D)

# Calculate the PDF of newly -observed data D_t

PDF_new = kernel.pdf(D_t)

# Sample n_new data points

new_samples = kernel.resample(n_new)

Approaches such as those mentioned above are relatively easy to implement, and deliver satisfactory results

with low-dimensional data. However, as the dimensionality of the data increases, such methods become

computationally intensive and in some cases are no longer as effective as with low-dimensional data. In

recent years, solutions to the problem of sampling from high-dimensional underlying distributions have

been the target of extensive research. The result has been a variety of methods for artificially generated data,

especially for images.

One of the first methods to generate realistic-looking images from an underlying distribution is that of GANs.

2The code can be found in https://github.com/GiorgTsial/GAN_NL_modal_analysis
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The GAN model defines a competition between two neural networks, the generator and the discriminator,

whose aim is to use random noise to generate real-looking data or to distinguish between real data and

artificially generated data. While GANs can be used to generate samples from the underlying distribution

(or manifold) of the data, a major drawback is that they cannot be used to assign a probability density to the

samples. Several variations of the original algorithm can be found in the literature, such as the conditional

GAN (cGAN) [205], which includes a control variable in the input of the generator and discriminator and

allows sampling from conditional probability distributions, and the Wasserstein GAN (WGAN) [206], which

improves the stability of the training of the models and introduces a more informative loss function. Open-

source resources are available for many of the numerous variations of GAN (often referred to as vanilla

GAN). A repository with implementations of several of these variants using PyTorch can be found here

https://github.com/eriklindernoren/PyTorch-GAN.

Close to the time GANs were introduced as a generative model, other models with similar capabilities were

also introduced. An alternative to generative modeling is that of the VAE. The VAE uses the neural network

architecture of an AutoEncoder (AE), which projects the data into a latent space with a smaller dimension

than the data dimension and then maps the latent vectors back into the original space. The traditional AE

approach places no restrictions on the structure of the latent space, whereas the VAE restricts the latent

variables to independent Gaussian distributions. With a VAE, one can draw samples of variables from

the latent space and generate samples from the underlying distribution of the data. As in the case of GANs,

different variants have been presented for VAEs. A comprehensive but not exhaustive list of implementations

in PyTorch can be found here https://github.com/AntixK/PyTorch-VAE.

Another deep-learning approach to generative modeling is offered by Normalizing Flows (NFs) [207, 208].

This specific algorithm provides a capability that GANs and VAEs do not offer, namely the estimation of

the probability density at the points of the data space. NFs use a series of invertible transformations to

map points from a Gaussian distribution to samples of the underlying distribution of the data. One can

therefore take points from the Gaussian distribution and transform them into artificial samples of the data

distribution or use the inverse transformations to calculate the probability density of samples of the data

space. A comprehensive implementation of NFs in pytorch can be found in [209] and the code is available

in https://github.com/VincentStimper/normalizing-flows.
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9. Vibration Control

Many engineered components and assemblies are exposed to dynamic environments during their lifetime.

For example, a satellite with sensitive instruments can be exposed to strong acceleration, vibration and shock

loads during the rocket launch and the subsequent stage separations. However, testing in the true environ-

ment can be quite expensive. For this reason, engineers need the ability to simulate these environments in

the laboratory.

Recently, researchers have begun to move away from traditional single-axis vibration testing towards testing

with multiple shakers with simultaneous control to multiple sensors throughout the test object [210, 211,

212]. While the theoretical basis for performing this type of test has been known for decades (e.g. [213]),

the hardware capacity required to perform these tests in real time has only recently become available.

With the flexibility to control a given test with multiple sensors from multiple excitation devices, the design

space for such a test is incredibly large. For this reason, the topic of MIMO vibration tests is currently being

researched intensively. Starting with the question of where the excitation sources are [214, 215] or control

sensors [216, 217, 218] should be placed, through to the derivation of the actual MIMO test specification

from flight data [219, 220, 221] and the application of limits and tolerances [222]. Even the control strategy

itself can be investigated [223, 224], including adaptation to nonlinear structures [225] or non-stationary

signals [226], or to combine several environments simultaneously [227]. While the accuracy of vibration

control is an important consideration; with multiple actuators there are often limitations on the size and

power available to perform a particular test. Therefore, there is considerable interest in reducing the energy

required to perform such tests [228, 229] or to try to approximate the fidelity of MIMO testing with large

single-axis shaker tables [230].

Vibration Control Theory. The general purpose of a vibration controller is to develop inputs to a system

(typically voltage signals to a vibration actuator) that cause the system to respond in certain degrees of

freedom. Depending on the type of control, the control equations can be set up in different ways.

In the case of random vibration, for example, the responses and inputs are represented as a PSD. In the

case of a single control channel and a single shaker, a single PSD is used. For MIMO control, however, we

will consider PSD matrices that include not only the vibration level at different frequencies for each control

channel, but also the relationships between the channels, often represented as coherence and phase. PSDs

are usually calculated from time signals using common techniques such as Welch’s technique [9], which is

the approach used by SciPy’s signal.csd function as discussed in Section 2.
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The general equation for this type of vibration problem with nx control channels and nv excitation signals is:

Gxx(ω) = H(ω)Gvv(ω)H(ω)H, (44)

where Gxx is the nx×nx PSD matrix of the responses at the control channels, Gvv is the nv×nv PSD matrix of

the excitation signals and H is the nx ×nv transfer function matrix representing the dynamics of the system.

The operator H stands for the complex conjugate transpose of a matrix. This equation is evaluated on each

frequency line ω . In general, the number of control responses nx can be greater than, equal to or less than

the number of excitation signals nv, although in any case there are effects on vibration control [215, 231].

The goal of a random vibration controller is then to determine the correct input matrix Gvv to generate the

desired response Gxx. One such approach is to simply take the pseudo inverse (†) of the transfer function

matrix at each frequency line:

Gvv(ω) = H(ω)†Gxx(ω)H(ω)†H
. (45)

More sophisticated strategies for controlling vibrations could implement regularization during inversion,

weight control channels or frequency lines based on controllability or multiple coherence, modify the signals

to meet channel response limits, update the signals based on previous control errors, etc., and will generally

be a function f of the matrix of the system transfer function, the desired responses, and any other metric or

user input that might be desirable to use:

Gvv = f (Gxx,H, ...) . (46)

Once the PSD of the excitation is calculated, the controller must compute time histories that do justice to the

levels and relationships between the various excitation signals on each frequency line; this can be achieved

using techniques such as those found in [232, 233].

Several realizations of time histories are generated from the excitation PSD and passed on to the amplifiers

of the shakers, and the responses to these signals are measured. The response PSD matrices are calculated

from the response time signals. These response PSD matrices can be compared with the desired response

PSD to generate various error metrics. Closed-loop vibration controllers can update the next iteration of the

output signals based on the error between the desired response and the achieved response. Measured time

data during control can also be used to recalculate the system transfer functions if, for example, the structure

is nonlinear and the matrix of the transfer function changes with the test level.
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9.1. Rattlesnake Vibration Controller

One difficulty of researching MIMO vibration control is the lack of an open platform on which to do the

research. Commercial vibration control software is typically proprietary, so the ability for an independent

research group to implement new ideas in existing software is limited. Many researchers end up writing their

own vibration controller, but this is very inefficient; a control strategy that would conceptually be less than

20 lines of computer code might evolve into more than 1000 lines of code by the time an entire controller

is written. Therefore it would be desirable if an open-source vibration control platform existed, allowing

researchers to focus more on the interesting portions of the problem such as implementing new control

strategies.

To fill this gap, the Rattlesnake Vibration Controller was developed. Rattlesnake is an open-source MIMO

combined-environment controller [234] written in the Python programming language. The source code

is available on GitHub (https://github.com/sandialabs/rattlesnake-vibration-controller)

and is released under the General Public License (GPL)-3.0 license. Rattlesnake attempts to make it easier

to experiment with new control strategies without having to significantly change the controller itself.

Rattlesnake contains abstracted interfaces to data acquisition hardware so that it can be operated with various

data-acquisition systems. Currently implemented hardware interfaces include NI-DAQmx from NI, LAN-

XI OpenAPI from HBK and Quattro from DataPhysics. Rattlesnake can also accept a set of state-space

matrices or a SDynPy System object (see Sec. 10) to provide a “virtual” test article; Rattlesnake integrates

these equations of motion to simulate vibration control, which is useful for developing new control strategies

without having to worry about damaging expensive test equipment if something goes wrong.

Rattlesnake also abstracts the different vibration environments, resulting in each environment having a stan-

dard interface and allowing Rattlesnake to run many different environments. Currently implemented are

MIMO Random Vibration Control, MIMO Transient Vibration Control, Time History Generation and Modal

Testing. Due to the abstracted interface, it is trivial for Rattlesnake to run these environments simultaneously

to provide a combined environment interface.

Rattlesnake includes a full graphical user interface that allows users to set up tests. Fig. 19 shows two

screenshots from a random vibration test.

To facilitate the exploration of vibration research, users can load custom control laws in both the MIMO

Random and MIMO Transient environments. These are either Python functions, generators or classes that

must accept certain arguments and return the new output. Below is an example of a custom control law that

can be loaded into Rattlesnake to implement the pseudo-inversion control described in Eq. (45).
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Figure 19: Screenshots of the Random Vibration environment definition (left) and running a Random Vibration test (right).

import numpy as np

def pseudoinverse_control(

specification , # Specifications

warning_levels , # Warning levels

abort_levels , # Abort Levels

transfer_function , # Transfer Functions

noise_response_cpsd , # Noise levels and correlation

noise_reference_cpsd , # from the system identification

sysid_response_cpsd , # Response levels and correlation

sysid_reference_cpsd , # from the system identification

multiple_coherence , # Coherence from the system identification

frames , # Number of frames in the PSD and FRF matrices

total_frames , # Total frames that could be in the PSD and FRF matrices

extra_parameters = '', # Extra parameters for the control law

last_response_cpsd = None , # Last Control Response for Error Correction

last_output_cpsd = None , # Last Control Excitation for Drive -based control

):

# Invert the transfer function using the pseudoinverse

tf_pinv = np.linalg.pinv(transfer_function)

# Return the least squares solution for the new output PSD

return tf_pinv@specification@tf_pinv.conjugate ().transpose(0,2,1)

The modal-testing environment, while not technically a vibration-control environment, was added to allow

engineers to perform dynamic characterization without changing equipment. The modal-testing environment

can perform hammer impacts as well as shaker excitation. In addition, Rattlesnake’s modal package can

be combined with other environments by utilizing Rattlesnake’s features for combined environments. For

example, the user can control the response amplitudes on a set of sensors to better characterize nonlinearities

in the test object during modal testing.

Although Rattlesnake was designed as research software, its capability has been demonstrated for large

channel-count tests. Rattlesnake has successfully controlled the specified response of 80 channels with 24

shaker drive signals over 4000 frequency lines while streaming 250 channels of data to disk. The data stored
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by Rattlesnake contains all the metadata that defines the test, so the user does not have to worry about

recording which test parameters were used to perform each test. These data files can be loaded directly into

the software to repeat a test.

10. SDynPy, A Structural Dynamics Framework for Python

A major challenge when performing structural dynamics calculations in Python is the lack of a consistent

framework and objects to represent the data types frequently encountered in structural dynamics. In prac-

tice, NumPy ndarrays are often used to store data. However, this approach is prone to indexing errors,

as practitioners may inadvertently select the wrong subset of rows or columns for a particular calculation.

In addition, frequently-desired operations such as plotting animated modes or large data sets are not imple-

mented. The SDynPy package was developed to overcome these challenges [235]. The SDynPy source code

is available on GitHub (https://github.com/sandialabs/sdynpy) and is released under the GPL 3.0

license.

SDynPy defines a convenient framework for performing structural dynamics analysis. It introduces a set of

objects to represent data types commonly used in structural dynamics, including:

• CoordinateArray – Representation of degrees of freedom defined by a node ID and the direction of

the local coordinate system, e.g. 101X+ , to support bookkeeping or the visualization of measurement

positions and directions. Many SDynPy objects can be directly indexed with CoordinateArray

objects, which simplifies bookkeeping and automatically handles sign reversals, e.g. if the degree of

freedom 101X- is defined but 101X+ is requested.

• NDDataArray – Representation of common data types from tests or finite-element analyzes. Sub-

classes of this class represent specific data types, e.g. time histories (TimeHistoryArray), frequency

response functions (TransferFunctionArray), and others

• ShapeArray – Representation of mode shapes or deflection shapes

• Geometry – Representation of test or finite-element geometry, consisting of nodes (NodeArray), co-

ordinate systems (CoordinateSystemArray), tracelines (TracelineArray) and

elements (ElementArray)

• System – Representation of mass, stiffness and damping matrices defining a dynamic system and

allows “reduced” systems in which a transformation between the internal state and the physical state
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is defined (e.g. a modal model or a constrained substructure model)

SDynPy array objects are typically implemented using subclasses of NumPy’s ndarray and are therefore

able to utilize features of the ndarray type, including arbitrary dimensionality, broadcasting, and many of

the NumPy functions that operate on ndarrays such as intersect1d, concatenate, or unique.

SDynPy reflects the Python philosophy of “Batteries Included”3 and therefore includes a wide range of

structural dynamics and related tools. This decision was made to facilitate its use by structural dynamicists

who are not well versed in programming concepts and probably have no interest in managing a large number

of Python modules. Some of these features include: readers for common file formats (including the Universal

File Format and Rattlesnake described in Sec. 9.1), simple finite elements, multi-reference mode fitters,

camera geometry and calibration functions, substructuring functions and force reconstruction functions.

Perhaps SDynPy’s most useful contribution to the open-source structural dynamics community is its graph-

ical user interfaces and data visualization tools, examples of which are shown in Fig. 20. These include

interactive signal processing, mode fitting, and geometry and shape visualization tools.

To summarize, SDynPy can significantly reduce the tediousness of structural dynamics analyzes, as complex

operations can often be performed in just a few lines of code. This allows users to focus more on structural

dynamics and less on bookkeeping and plotting operations.

11. Acoustically Induced Vibration of Pipeline Systems

Gas pipeline systems in oil and gas refineries often operate under high static and dynamic pressures, with

reciprocating compressors creating the necessary conditions. Gas pulsation, a common source of excitation,

can significantly affect the behavior of pipelines due to the interaction between their structural dynamics

and the acoustic response of the transported gas, a phenomenon known as Acoustically-Induced Vibration

(AIV) [236]. When acoustic and structural natural frequencies coincide, vibrations can amplify dramatically

[237], especially in reciprocating compressors where harmonic energy is concentrated below 100 Hz [238].

To mitigate these effects, numerical techniques and standards such as API 618 [239] guide the design and

analysis of safe and reliable pipeline systems that ensure adequate structural and acoustic performance [240].

These analyzes compare predicted values to allowable limits to prevent fatigue failures in accordance with

API 618 and Energy Institute guidelines [241]. FEM and Computational Fluid Dynamics (CFD) are often

used for fluid-induced noise and vibration [238, 242]. Although FEM and CFD are excellent for modeling

3see https://docs.python.org/3/tutorial/stdlib.html#batteries-included
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Figure 20: Example Graphical User Interfaces in SDynPy

complex geometries and local effects, their computational costs can be prohibitive for large piping systems

[238]. For low-frequency plane-wave scenarios, 1D models offer a computationally efficient alternative that

quickly solves global pipeline behavior and guides more detailed FEM or CFD analyzes for critical regions

[236]. A classical 1D approach, the Transfer-Matrix Method (TMM), has proven to be a reliable tool for

acoustic analysis over the last 40 years [236, 243]. In addition, low-frequency analysis allows the use of

beam theory to model the global vibration behavior of structures, which is implemented by the FEM [244].

The integration and adaptation of TMM with FEM can provide an effective approach for the analysis of AIV

in piping systems.

TMM is an analytical method for solving linear acoustic problems in chain-like systems such as mufflers,

ducts and related components [245], based on the direct solution of the acoustic wave equation considering

plane waves. It remains a useful tool, as demonstrated in works like Bravo and Maury [246], who suc-
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Figure 21: Uniform tube, 1D acoustic element, with length L (adapted from [236]).

cessfully applied this method in the analysis of silencers in low-speed ducted flows. Tuozzo et al. [236]

investigated the mathematical properties and applications of this method for the acoustic behavior of pip-

ing systems, focusing on the study of low-frequency AIV in situations where plane waves can be assumed.

Tuozzo et al. [236] and Mareze et al. [247] have found, however, that for large and complex piping sys-

tems that are still within the range of the plane-wave assumption, a simple adaptation of this method, called

the Mobility-Matrix Method (MMM), provides a more suitable non-mixed numerical approach, especially

for simplifying the coupling of different acoustic systems. For a given acoustic plane wave element (see

Fig. 11), the MMM organizes the nodal pressures p1 and p2 as well as the volume velocities q1 and q2 from

the TMM into separate vectors and transforms the transfer matrix into a mobility matrix that depends on the

fluid properties such as sound velocity c f , density ρ f and cross-sectional area S f . The mobility matrix of the

element can be written for a given angular frequency ω [236] as:−j cot(kx)/Z f j/Z f sin(kx)

j/Z f sin(kx) −j cot(k x)/Z f

p1

p2

=

q1

q2

 , (47)

where k = ω/c f is the acoustic wave number, Z f = ρ f c f /S f and j is the complex unit.

This strategy leads to a two-noded element with one degree-of-freedom per node (pressure), which can be

assembled with other elements in a similar way to the FEM. This approach is also known as the Finite

Element Transfer-Matrix Method (FETM). The mobility matrix in Eq. (47) can be further refined by using

dissipation models such as the Low-Reduced Frequency (LRF) model [248] and models for dissipation at

low Mach numbers by Howe [249] and Peters et al. [250] can be used.

In addition, AIV analysis involves the study of the structural response of pipes excited by internal acoustic

pulsations. Assuming that the pipes are made of linear-elastic isotropic materials whose length is much

larger than their diameter and whose deflection is small compared to the thickness, this allows the use of

Timoshenko beam theory with FEM as performed by Wu et al. [244]. Since AIV focuses on the analysis of
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the global, low-frequency, structural behavior of the pipeline modeled as a beam system, a weak coupling

between the structural and acoustic fields can be assumed [251]. In this case, the axial stress σ1, the radial

stress σr and the circumferential stress, σc on the structure pipe wall (which are analytically derived from

the pipe dimensions and the internal pressure) are converted into axial forces [252]. In this case, for a given

structural beam element, the equivalent axial forces acting at both ends can be determined after the acoustic

analysis, and the additional element load vector fe
p to be added to the vector of external structural forces is

given by (in element coordinates):

fe
p =

[
−Fx,0,0,0,0,0,Fx,0,0,0,0,0

]′
, (48)

where, assuming ν as the Poisson coefficient of material,

Fx = S f

[(
σ1 −ν(σr +σc)

)]
. (49)

This ”weak” (one-way ) coupling is assumed on the basis of the following hypotheses: The fluid is a gas;

the acoustic plane wave propagates axially (1-D acoustics); the pipe is thin-walled and linearly elastic; the

radial inertia of the pipe wall is neglected for low frequencies; and the velocity of the acoustic wave c f in

the gas is affected by the mechanical compliance of the pipe wall, given by:

c f =

(
ρ f

K f

(
1+

DiK f

Et

))−1/2

, (50)

where K f is the bulk modulus of the fluid, E is the modulus of elasticity of the pipe material, Di is the

internal diameter and t is the wall thickness of the pipe.

11.1. OpenPulse

OpenPulse [253], an open-source Python software, numerically models low-frequency AIV and allows the

user to define the pipeline route and geometry, material properties, sections and loads (measured or theoret-

ical). It first performs a time-harmonic acoustic response analysis of the 1D acoustic domain with FETM

and then applies the resulting pressure field as internal distributed loads to the structural piping system mod-

eled with FEM and Timoshenko 3D beam theory. OpenPulse has a GUI so that it can be used similarly

to well-known commercial finite-element software. It has been implemented with PyQt5 [254] using VTK

[255] to render the graphical output. Gmsh [256] is used as a mesh processor and facilitates the assignment
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Figure 22: Path, geometry, sections and properties definition in OpenPulse.

of nodes and elements to properties and boundary conditions. Linear systems of equations and algebraic

operations are solved with NumPy [257], SciPy [2] and PyPardiso [258]. For the visualization of the data,

Matplotlib [259] is used to create 2D diagrams, while the data interfaces are based on Pandas [260] and

H5py [261] to manage and store structured datasets. Finally, dependency management and environment

configuration are streamlined with Poetry [262]. The source code of OpenPulse is available on GitHub

(https://github.com/open-pulse/OpenPulse) and released under the GPL v3 license.

In OpenPulse, each section is defined sequentially based on isometric drawings, with properties assigned

accordingly, as shown in Fig. 22. Different sections, materials and structural components (such as sup-

port beams, expansion chambers and valves) can be configured, allowing the design of complex systems.

Each structural element is modeled with a customized beam-element formulation to accurately represent the

required structural behavior.

Various types of acoustic and structural boundary conditions can be applied to the model, including sound

pressure, volume velocity, acoustic impedance, prescribed displacements for support conditions, external

structural forces, self-weight and elastic supports. External tables can be imported to define excitations or

properties that vary with frequency.

If the user has installed the REFPROP database [263] on his computer, the gas properties can be determined

by directly specifying the working pressure and temperature in OpenPulse. The resulting time-harmonic
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Figure 23: Displacement results for a given frequency, obtained after weak coupling with the acoustic problem.

pressure distribution is calculated for all pipes in the model and can be visualized with a representative color

map. The problem of structural harmonics is then addressed by using the acoustic results to calculate the

equivalent internal loads in the structural FEM model. The time-harmonic displacements of the entire sys-

tem, including the non-pipe structures, can then be analyzed, as shown in Fig. 23. In addition to visualizing

the global behavior, the user can plot local frequency responses for both pressure and displacement. This

allows for more detailed analysis to identify potential matches between acoustic and structural resonances or

to investigate specific forced response frequencies. OpenPulse identifies when the plane-wave assumption is

not met and also indicates when the system may be nonlinear and urges caution when evaluating responses.

12. SDyPy: Structural Dynamics Python

While Scipy [2] collects and organizes most of the essential numerical algorithms, there is not yet a package

that would do the same for the algorithms and methods in the field of structural dynamics. The widely used

and new state-of-the-art methods are often implemented in independent packages that offer little interoper-

ability and no common standards to enforce rigorous testing, standardized documentation, or streamlined

distribution. In an effort to defragment open-source efforts in the field of structural dynamics, the SDyPy

package was introduced.

The goal of SDyPy is to organize and distribute the existing packages and to provide native SDyPy functions.
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The inclusion of an existing package in the SDyPy framework should therefore not affect the independence

of the package beyond the will of the original authors. With the variable independence of the packages in

mind, the multi-level integration framework was introduced. The multi-level integration structure presented

in the SDyPy Enhancement Proposal (SEP) number 1 defines four levels of integration:

• 4th level: External packages that deal with structural dynamics and are listed as related projects.

These packages are developed completely independently and are listed as reference and potential

dependencies for 3rd, 2nd and 1st level packages.

• 3rd level: Tests and documentation correspond to the SDyPy template. The package has an MIT or

similar license that allows free use for any purpose (including commercial). Availability in the Python

Package Index and installation via the command pip.

• 2nd level: All elements of the 3rd level. The package is a namespace package of SDyPy. Also

corresponds to the SDyPy nomenclature and has the same license.

• 1st level: All elements from level 2. Developed in a repository under the SDyPy organization.

The four levels of integration ensure that the package can be associated with SDyPy regardless of the desired

independence of the authors.

If SEP1 defines the most important functions and guidelines for SDyPy, then SEP2 defines nomenclature

guidelines, SEP3 defines the SDyPy namespace packages, SEP4 presents the SDyPy roadmap and SEP5

defines the unified time-series data format.

SEP4, the roadmap for the content of the SDyPy packages, defines several 1st-level packages that cover

the most important parts of the field of structural dynamics. The currently implemented 1st level packages

include:

• SDyPy.EMA: Experimental modal analysis.

• SDyPy.FRF: Frequency Response Function estimation.

• SDyPy.excitation: Generation of the excitation signals.

• SDyPy.io: Input/output methods (currently LVM, UFF and MRAW).

The 1st and 2nd level packages (namespace packages) are used seamlessly with the SDyPy package, as they

can be accessed directly via the SDyPy namespace. The existing 1st level modules in SDyPy are presented

in the following.
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SDyPy.EMA submodule. SDyPy EMA is the first 1st-level package introduced in the SDyPy framework. Its

origins lie in the package pyEMA [264]. After the launch of the SDyPy initiative, it was considered a good

candidate for full integration into the SDyPy framework. The following example shows how it is used:

import sdypy as sd

ema_object = sd.EMA.Model(freq , frf_array)

ema_object.get_poles () # Calculates the poles for stabilization

ema_object.select_poles () # Opens the interface for selecting the stable poles

To keep the code clear, the SDyPy should be imported as sd, similar to numpy’s np. The module EMA is

called from the SDyPy namespace, from which the module Model can be called and used.

SDyPy.FRF submodule. In structural dynamics, the estimation of the frequency response function is a fre-

quently used feature. The SDyPy FRF module is a 1st level package which serves as a channel between the

long-available pyFRF [265] package and the SDyPy framework. The pyFRF package is a 3rd level package

and is not itself a namespace package to allow its direct use. To avoid the active maintenance of two identical

packages (pyFRF and SDyPy FRF), the SDyPy FRF imports the pyFRF and makes it available in the SDyPy

framework. How to use the SDyPy FRF:

frf_object = sd.FRF.FRF(sampling_frequency , exc=excitation , resp=respones)

frf = frf_object.get_FRF(type="default", form="receptance") # Get the estimated FRF

The integration of pyFRF int SDyPy is a good example of how to integrate packages that do not want to

adhere to the requirements of 1st/2nd level integration.

SDyPy.excitation submodule. The generation of excitation signals requires the handling of numerous details

which, if overlooked, can lead to inappropriate excitation of the structure. The goal of SDyPy.excitation is to

simplify signal generation and make it reliable. Similar to SDyPy.FRF, SDyPy.excitation channels the func-

tionality of another package, in this case pyExSi [266]. As a consequence of pyExSi, the excitation module

provides the generation of impulse signals, uniform random, normal random, pseudo-random, stationary

Gaussian, stationary non-Gaussian, non-stationary non-Gaussian, burst random and sine sweep signals. To

be used as part of the SDyPy framework:

signal = sd.excitation.pseudo_random(N) # signal of length N

SDyPy.io submodule. In addition to the processing of signals in the area of structural dynamics, an important

aspect is the loading and saving of these signals. There are several packages that can process different

formats. SDyPy.io aims to make these input/output packages conveniently available. Currently, SDyPy io
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(similar to the FRF and excitation modules) channels the functionality of the pyUFF, lvm read and pyMRAW

packages. The module is further subdivided according to the file format used. An example of reading the

Universal File Format (UFF):

uff_object = sd.io.uff.UFF(filename)

uff_object.read_sets () # Read the sets contained within the UFF file

Similarly, the LabVIEW Measurement Files (LVM) can be read:

lvm_data = sd.io.lvm.read(filename)

The raw data from the Photron high-speed cameras are saved in the MRAW format. The MRAW can be read

with:

data , info = sd.io.mraw.load_video(filename)

13. Conclusions

In the last 10 years, Python-based open-source development has experienced exponential growth. Projects

such as Numpy, SciPy, Pandas, TensorFlow, PyTorch, and scikit-learn have become indispensable tools for

big-data and machine-learning research. The open-source nature of these tools enables fast development,

collaboration and accessibility, democratizing these fields and fostering innovation. Several scientific fields

have benefited from open-source research, including signal processing and mechanical-systems modeling.

The readership of journals such as MSSP has been able to build on these general scientific packages and

also develop several specific packages; however, the potential for the development of a general package for

structural dynamics remains.

This article gives an overview of selected Python projects in the field of signal processing and mechanical

systems, such as: Vibration Fatigue, Vibration Control, Substructuring, Experimental Modal Analysis. Most

of the presented packages have a permissive open-source license and a broad user base. For the long-term

survival of an open-source package, a broad developer base and the participation of several institutions are

essential. For this reason, Sec. 12 presents a proposal for the development of a general Python package to

support structural dynamics research involving multiple institutions. The SDyPy package proposes a pack-

age template that makes it relatively easy to integrate other packages. In this way, established packages can

be integrated into a general framework in a relatively simple way. The integration follows a roadmap agreed

by the community. In addition, the community can suggest improvements via the SDyPy Enhancement

Proposals (SEP).
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Open-source-based research is developed, discussed, managed, and governed openly. Openness and free use

are essential for the progress of science. In this way, a researcher approaching a scientific topic can progress

faster and with a smaller redundancy of effort. The same applies to an experienced researcher introducing a

new method: With the underlying open-source packages, such a researcher can focus on the groundbreaking

scientific contribution and reduce the effort required to implement the known methods.
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Kulick, Johannes L. Schönberger, José Vinı́cius de Miranda Cardoso, Joscha Reimer, Joseph Har-

rington, Juan Luis Cano Rodrı́guez, Juan Nunez-Iglesias, Justin Kuczynski, Kevin Tritz, Martin
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[38] K A Kvåle and O Øiseth. Automated operational modal analysis of an end-supported pontoon bridge

using covariance-driven stochastic subspace identification and a density-based hierarchical cluster-

ing algorithm, pages 3041–3048. CRC Press, 2021.

[39] Ricardo J G B Campello, Davoud Moulavi, Arthur Zimek, and Jörg Sander. Hierarchical density

estimates for data clustering, visualization, and outlier detection. ACM Trans. Knowl. Discov. Data,

10:5:1–5:51, 2015.

[40] Javad Baqersad, Peyman Poozesh, Christopher Niezrecki, and Peter Avitabile. Photogrammetry and

optical methods in structural dynamics – a review. Mechanical Systems and Signal Processing, 86:17–

34, 2017.
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[99] Martin Česnik and Janko Slavič. Frequency-dependent fatigue properties of additively manufactured

PLA. Polymers, 16(15), 2024.

[100] LADISK. The FLife source code repository. https://github.com/ladisk/FLife, Dec 2022.

[101] Pietro D’Antuono, Wout Weijtjens, and Christof Devriendt. Py-fatigue, 2022. Accessed: 2024-09-12.

82

https://github.com/ladisk/FLife


[102] Negin Sadeghi, Koen Robbelein, Pietro D’Antuono, Nymfa Noppe, Wout Weijtjens, and Christof

Devriendt. Fatigue damage calculation of offshore wind turbines’ long-term data considering the

low-frequency fatigue dynamics. Journal of Physics: Conference Series, 2265(3):032063, may 2022.

[103] Gabriel Marsh, Colin Wignall, Philipp R Thies, Nigel Barltrop, Atilla Incecik, Vengatesan Venugopal,

and Lars Johanning. Review and application of rainflow residue processing techniques for accurate

fatigue damage estimation. International Journal of Fatigue, 82:757–765, 2016.

[104] C.H. McInnes and P.A. Meehan. Equivalence of four-point and three-point rainflow cycle counting

algorithms. International Journal of Fatigue, 30(3):547–559, 2008.

[105] Negin Sadeghi, Pietro D’Antuono, Nymfa Noppe, Koen Robbelein, Wout Weijtjens, and Christof

Devriendt. Quantifying the effect of low-frequency fatigue dynamics on offshore wind turbine foun-

dations: a comparative study. Wind Energy Science, 8:1839–1852, 12 2023.

[106] Det Norske Veritas GL. Dnvgl-rp-c203: Fatigue design of offshore steel structures. DNV GL: Oslo,

Norway, 2016.

[107] Gyoko Oh. Effective stress and fatigue life prediction with mean stress correction models on a ferritic

stainless steel sheet. International Journal of Fatigue, 157:106707, 2022.

[108] KNua Smith. A stress-strain function for the fatigue of metals. Journal of materials, 5:767–778,

1970.

[109] OWI-Lab. py-fatigue-tutorials, 2024. Accessed: 2024-09-12.

[110] Kris Hectors and Wim De Waele. Cumulative damage and life prediction models for high-cycle

fatigue of metals: A review. Metals, 11(2), 2021.

[111] Paul Paris and Fazil Erdogan. A critical analysis of crack propagation laws. 1963.

[112] Dimarogonas. A brief history of rotordynamics. In Proceeding of the International Conference on

Rotating Machine Dynamics, Rotordynamics, Venice, Italy, April 1992. Springer-Verlag.

[113] J M Vance, F Y Zeidan, and B G Murphy. Machinery Vibration and Rotordynamics. Wiley, 2010.

[114] Michael I. Friswell, John E. T. Penny, Seamus D. Garvey, and Arthur W. Lees. Dynamics of rotating

machines. Cambridge University Press, 2010.

83



[115] Y Ishida and T Yamamoto. Linear and Nonlinear Rotordynamics: A Modern Treatment with Appli-

cations. Wiley-VCH, second edition, 2013.

[116] R. Tiwari. Rotor Systems: Analysis and identification. CRC Press, 2017.

[117] Heesoo Kim, Janne Nerg, Tuhin Choudhury, and Jussi T. Sopanen. Rotordynamic simulation method

of induction motors including the effects of unbalanced magnetic pull. IEEE Access, 8:21631 – 21643,

2020.

[118] Maurice F. White, Erik Torbergsen, and Victor A. Lumpkin. Rotordynamic analysis of a vertical

pump with tilting-pad journal bearings. Wear, 207(1-2):128 – 136, 1997.

[119] Tobias S. Morais, Aldemir Ap. Cavalini, Gilberto P. Melo, and Valder Steffen. Input force iden-

tification in a francis hydro turbine unit model. Mechanisms and Machine Science, 63:309 – 323,

2019.
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